Гормоны задней доли гипофиза. Понятие о нейрогуморальных отношениях и гормональной регуляции функций. Краткий обзор эндокринных желез

Если вырезанную почку пересадить на шею животному, соединив почечную артерию с сонной артерией, а почечную вену- с яремной веной, то такая почка, лишенная нервных связей с организмом, может работать в течение многих недель и даже месяцев, выделяя более или менее нормальную мочу. При нагрузке организма водой или поваренной солью количество воды или соли, выделяемой переса почкой, увеличивается. Следовательно, даже при полной денервации возможна почти нормальная функция почек . Более того, несмотря на денервацию, деятельность пересаженной почки изменяется под влиянием раздражений, действующих на нервную систему. Так, при болевых раздражениях денервированная перестает выделять мочу так же, как и нормально иннервированная почка.

Это происходит в следствие того, что при болевых раздражениях происходит возбуждение гипотамуса. Импульсы от его супраоптического ядра поступают к задней доле гипофиза и увеличивают секрецию антидиуретического гормона (рис. 104 ). Последний, поступая в кровь, усиливает обратное всасывание мочи и тем самым уменьшает диурез (отсюда и проистекает название гормона).

Рис. 104. Схема, иллюстрирующая влияние гипоталамуса на диурез.

Механизм действия антидиуретического гормона выяснен исследованиями А.Г.Гинецинского. Этот гормон повышает проницаемость стенок собирательных трубок почки, вследствие чего переходит из мочи в тканевую жидкость мозгового слоя почки и кровь.

Увеличение проницаемости собирательных трубок происходит под влиянием фермента гиалуронидазы. Последняя деполимеризует гиалуроновую кислоту, входящую в состав межклеточного вещества стенок собнрат ных трубок. При деполимеризации гиалуроновой кислоты стенки собирательных трубок становятся пористыми и пропускают воду. Гиалуронидаза активируется или образуется эпителием собирательных трубок под влиянием антидиуретического гормона, что и ведет к усилению всасывания воды.

Введение препаратов гиалуронидазы в артерию одной из почек собаки резко снижало диурез этой почки, в то время как противоположная почка выделяла обычные количества мочи. Ингибиторы гиалуронидазы (гепарин, аскорбиновая кислота) по своему действию являются антагонистами антидиуретического гормона, резко увеличивая выделение воды с мочой.

Недостаточность функции задней доли гипофиза, выделяющей антидиуретический гормон, выключает действие описанного выше регулирующего механизма. Стенка дистальных отделов нефрона становится полностью непроницаемой для воды, и почка выводит большое количество ее с мочой. За сутки в этих случаях может выделиться до 20-25 л мочи (несахарное мочеизнурение). Секреция антидиуретического гормона гипофиза регулируется ядрами гипоталамуса.

На диурез оказывает влияние также гормон мозгового вещества надпочечников - адреналин. При введении в сосуды почки малых доз адреналина объем почки увеличивается. Это объясняется тем, что адреналин суживает отводящие артериальные сосуды (vas efferens) и приводит тем самым к увеличению фильтрационного давления в клубочках.

В больших дозах адреналин суживает также приводящие сосуды, что уменьшает приток крови к клубочкам и ведет к прекращению диуреза.

Некоторые из гормонов коркового слоя надпочечников, так называемые минералокортикоиды - альдостерон, дезоксикортикостерон, воздействую на эпителий канальцев, повышают всасывание в кровь натрия. Заболевание или удаление надпочечников выключает этот механизм и ведет к резкой потере натрия с мочой и к тяжелым нарушениям состояния организма.

На деятельность почек оказывают влияние также гормоны щитовидной и паращитовидных желез.

Гормон щитовидной железы уменьшает связывание воды и солеи тканями, вызывая их переход в кровь, и таким путем увеличивает диурез. Помимо того, он усиливает все виды обмена, в частности белковый обмен, вследствие чего увеличивается образование конечных продуктов этого обмена, что также ведет к усилению диуреза. Гормон паращитовидных желез способствует переходу кальция и фосфора из костей в кровяное русло и резкому повышению содержания этих веществ в крови, вследствие усиливается выделение их с мочой.

12.6.3. Реабсорбция в канальцах

В почках у человека за 1 сут образуется около 180 л ультрафильтрата, объем выделяемой мочи составляет от 1 до 1,5 л, остальная жидкость реабсорбируется в почечных канальцах, В просвет почечного канальца поступают все растворенные в плазме крови низкомолекулярные вещества, а также очень небольшое количество белков. Поэтому основное назначение системы, обеспечивающей обратное всасывание веществ в канальцах, состоит в том, чтобы вернуть в кровь все жизненно важные вещества и в необходимых количествах, а экскретировать конечные продукты обмена веществ, токсические и чужеродные соединения и физиологически ценные вещества, если они имеются в избытке. Важное значение имеет фильтрация в клубочках гормонов и некоторых других физиологически активных веществ, которые в процессе реабсорбции инактивируются, а их компоненты возвращаются в кровь или удаляются из организма.

Различные отделы почечных канальцев отличаются по способности всасывать вещества из просвета нефрона. С помощью анализа жидкости из отдельных частей нефрона были установлены состав, функциональное значение и особенности работы всех отделов канальцев почки. В проксимальном сегменте нефрона из ультрафильтрата в обычных условиях полностью реабсорбируются глюкоза, аминокислоты, витамины, небольшие количества белка, пептиды, ионы Na + , К + , Са 2+ , Mg 2+ , мочевина, вода и многие другие вещества. В последующих отделах нефрона органические вещества не всасываются, в них реабсорбируются только ионы и вода (рис. 12.8).

В проксимальном сегменте нефрона у млекопитающих всасываются около 60-70 % профильтровавшихся ионов Na + и Сl - , более 90 % НСО 3 - , перечисленные выше органические и неорганические вещества, доля которых меньше в общей концентрации веществ, растворенных в плазме крови. Отличительной особенностью реабсорбции в проксимальном канальце является то, что вслед за всасываемыми веществами реабсорбируется вода вследствие высокой осмотической проницаемости стенки этого отдела нефрона. Поэтому жидкость в проксимальном канальце всегда остается практически изоосмотической плазме крови. Всасывание отдельных веществ в канальцах обеспечивается разными способами, их описание поможет понять многообразие молекулярных механизмов реабсорбции в не-фроне.

Клетки эпителия почечных канальцев являются полярными, асимметричными. Их плазматическая мембрана, обращенная в просвет канальца, называется люминальной (от лат. lumen - просвет) или апикальной (от лат. apex - вершина). Ее свойства во многих отношениях иные, чем у плазматических мембран боковых частей и основания клетки, называемых базолатералъными мембранами.

Для понимания физиологических механизмов реабсорбции веществ существенно, что в люминальной мембране локализованы переносчики и ионные каналы для многих веществ, обеспечивающие

прохождение последних через мембрану в клетку. В базолатеральных мембранах содержатся Na, К-АТФаза, Са-АТФаза, переносчики некоторых органических веществ. Это создает условия для всасывания органических и неорганических веществ из клетки в межклеточную жидкость, в конечном счете в сосудистое русло. Наличие в апикальной мембране натриевых каналов, а в базолатеральных мембранах натриевых насосов обеспечивает возможность направленного потока ионов Na + из просвета в клетку канальца и из клетки с помощью насоса в межклеточное вещество. Таким образом, клетка функционально является асимметричной, обеспечивая поток веществ из просвета канальца в кровь.

Для такого процесса имеются структурные и биохимические предпосылки. В базальной части клеток почечных канальцев сосредоточены митохондрии, в которых при клеточном дыхании вырабатывается энергия для работы ионных насосов.

Глюкоза. Ежеминутно в канальцы почек у человека поступает 990 ммоль глюкозы, в 1 сут в почках реабсорбируется около 989,8 ммоль, т.е. моча оказывается практически свободной от глюкозы. Следовательно, всасывание глюкозы происходит против концентрационного градиента, в результате из канальцевой жидкости в кровь реабсорбируется вся глюкоза при нормальной ее концентрации в крови.

При повышении содержания глюкозы в плазме крови с 5 до 10 ммоль/л глюкоза появляется в моче. Это обусловлено тем, что в люминальной мембране клеток проксимального канальца находится ограниченное количество переносчиков глюкозы. Когда они полностью насыщаются глюкозой, достигается ее максимальная ре-абсорбция, а избыток начинает экскретироваться с мочой. Величина максимальной реабсорбции глюкозы имеет важное значение для функциональной оценки реабсорбционной способности клеток проксимальных канальцев (см. рис. 12.7).

Для определения максимальной величины транспорта глюкозы mG) достигают полного насыщения системы ее канальцевого транспорта. С этой целью в кровь вводят глюкозу, повышая ее концентрацию в клубочковом фильтрате до тех пор, пока не будет достигнут порог реабсорбции и глюкоза не начнет в значительных количествах выделяться с мочой. Величину Т mG рассчитывают по разнице между количеством профильтровавшейся в клубочках глюкозы (равно произведению объема клубочкового фильтрата C In на концентрацию глюкозы в плазме крови P G) и выделившейся с мочой (U G - концентрация глюкозы в моче, V - объем выделившейся мочи):

Величина Т mG характеризует полную загрузку системы транспорта глюкозы. У мужчин она равна 2,08 ммоль/мин (375 мг/мин), у женщин - 1,68 ммоль/мин (303 мг/мин) при расчете на 1,73 м 2 поверхности тела.

На примере глюкозы можно рассмотреть мембранные и клеточные механизмы реабсорбции моносахаридов и аминокислот в

почечных канальцах. В апикальной мембране клеток проксимального канальца глюкоза соединяется с переносчиком, который должен одновременно присоединить ион Na + после чего комплекс приобретает способность транспортироваться через мембрану. В результате в цитоплазму клетки поступают и глюкоза, и натрий. Так как мембрана отличается высокой селективностью и односторонней проницаемостью, она не пропускает глюкозу обратно из клетки в просвет канальца. Энергетическим источником для переноса глюкозы через апикальную мембрану служит меньшая концентрация Na + в цитоплазме клетки, удаляемого с помощью Na, К-АТФазы, локализованной в ба-зальной плазматической мембране клетки. Такой процесс получил название вторично-активного транспорта, когда перенос веществ при их всасывании из просвета канальца в кровь происходит против концентрационного градиента, но без затраты на него энергии клетки. Она расходуется на перенос ионов натрия. Первично-активным называют транспорт в том случае, когда происходит перенос вещества против электрохимического градиента за счет энергии клеточного метаболизма. Наиболее ярким примером является транспорт ионов Na + , который осуществляется при участии фермента Na, К-АТФазы, расходующей энергию АТФ. После освобождения от связи с переносчиком глюкоза поступает в цитоплазму, достигает базальной плазматической мембраны и перемещается через нее с помощью механизма облегченной диффузии.

Белки и аминокислоты . Ультрафильтрация приводит к тому, что в просвет нефрона поступают неэлектролиты и электролиты. В отличие от электролитов, которые, проникнув через апикальную мембрану, в неизменном виде достигают базальной плазматической мембраны и транспортируются в кровь, перенос белка обеспечивается иным механизмом, получившим название пиноцитоз. Молекулы профильтровавшегося белка адсорбируются на поверхностной мембране клетки, мембрана впячивается внутрь клетки с образованием пиноцитозной вакуоли. Эта вакуоль движется в сторону базальной части клетки; в околоядерной области, где локализован пластинчатый комплекс (аппарат Гольджи), они могут сливаться с лизосомами, в которых высока активность ряда протеолитических ферментов. В лизосомах захваченные белки в результате ферментативного гидролиза расщепляются до аминокислот и удаляются в кровь через базальную плазматическую мембрану.

Профильтровавшиеся в клубочках аминокислоты почти полностью реабсорбируются клетками проксимального канальца. В люминальной мембране имеется не менее четырех раздельных механизмов транспорта аминокислот из просвета канальца в кровь: специальные системы реабсорбции для нейтральных, двуосновных, дикарбоксильных аминокислот и иминокислот. Каждая из этих систем обеспечивает всасывание нескольких аминокислот только одной группы. Так, например, система реабсорбции двуосновных аминокислот участвует во всасывании лизина, аргинина, орнитина и, возможно, цистина. При введении в кровь избытка одной из указанных выше аминокислот начинается усиленная экскреция

остальных аминокислот только этой группы. Системы транспорта отдельных групп аминокислот контролируются раздельными генетическими механизмами. Описаны наследственные заболевания, одним из проявлений которых служит увеличенная экскреция определенных групп аминокислот.

Недавно были получены данные, что в почечных канальцах могут реабсорбироваться дипептиды и трипептиды в неизмененном виде. Пептидные гормоны, фильтруемые в почечных клубочках, частично гидролизуются и возвращаются в кровь в виде аминокислот, частично экскретируются с мочой.

Выделение с мочой слабых кислот и оснований зависит от их ультрафильтрации в клубочках, реабсорбции и секреции в проксимальных канальцах, а также от "неионной диффузии", влияние которой особенно сказывается в дистальных канальцах и собирательных трубках. Эти соединения могут существовать в зависимости от рН среды в двух формах: неионизированной и ионизированной. Клеточные мембраны более проницаемы для неионизированных веществ. Многие слабые кислоты с большой скоростью экскретируются с щелочной мочой, а слабые основания, напротив, с кислой. У оснований степень ионизации увеличивается в кислой среде, но уменьшается в щелочной. В неионизированном состоянии эти вещества растворимы в липидах и проникают в клетки, а затем в плазму крови, т.е. реабсорбируются. Если в канальцевой жидкости значение рН сдвинуто в кислую сторону, основания ионизированы и преимущественно экскретируются с мочой. Так, например, никотин является слабым основанием, ионизированным на 50 % при рН 8,1, он в 3-4 раза быстрее экскретируется с кислой мочой (рН около 5), чем при щелочной реакции (рН 7,8). Неионная диффузия влияет на выделение почкой аммония, ряда лекарственных препаратов.

Электролиты. Всасывание профильтровавшихся в клубочках ионов Na + , С1 - и НСО 3 - требует наибольших энерготрат в клетках нефрона. У человека в 1 сут реабсорбируются около 24 330 ммоль натрия, 19 760 ммоль хлора, 4888 ммоль бикарбоната, а выделяется с мочой 90 ммоль натрия, 90 ммоль хлора, менее 2 ммоль бикарбоната. Транспорт натрия является первично-активным, т.е. именно на его перенос расходуется энергия клеточного обмена. Ведущую роль в этом процессе играет Na, К-АТФаза. В проксимальном канальце у млекопитающих реабсорбируется около 2 / 3 профильтровавшегося натрия. Обратное всасывание Na + в этом канальце происходит против небольшого градиента, и его концентрация в канальцевой жидкости остается такой же, как и в плазме крови. В проксимальном канальце реабсорбируются все остальные ионы. Как отмечалось выше, из-за высокой проницаемости стенки этого канальца для воды жидкость в просвете нефрона остается изоосмотичной плазме крови.

Ранее считали, что в проксимальном сегменте нефрона происходит обязательная (облигатная) реабсорбция, т.е. при всех условиях всасывание ионов Na + , Cl - , воды является постоянной величиной. Напротив, в дистальных извитых канальцах и

Мембранные механизмы транспорта Na + в клетках различных отделов нефрона
В базальных мембранах всех типов клеток содержится Na, К + АТФаза, обеспечивающая обмен ионов Na + на ионы К + . В люминальной мембране локализована система котранспорта Na + и глюкозы (G), натриевые каналы, система котранспорта некоторых других ионов; стрелками указаны участки нефрона, где находятся клетки соответствующих типов

собирательных трубках реабсорбция ионов и воды может регулироваться, ее величина меняется в зависимости от функционального состояния организма. Результаты последних исследований указывают на то, что под влиянием импульсов, поступающих по эфферентным нервным волокнам к почке, и при действии физиологически активных веществ (например, одного из натрийуретических гормонов) регулируется реабсорбция натрия и в проксимальном отделе нефрона" Это особенно отчетливо выявляется при увеличении объема внутрисосудистой жидкости, когда уменьшение реабсорбции в проксимальном канальце способствует усилению экскреции ионов и воды, а тем самым восстановлению объема крови.

В результате реабсорбции в проксимальном канальце большинства компонентов ультрафильтрата и воды объем первичной мочи резко уменьшается и в начальный отдел петли Генле у млекопитающих поступает около 1 / 3 профильтровавшейся в клубочках жидкости. В петле Генле всасывается до 25 % натрия, поступившего в нефрон при фильтрации, в дистальном извитом канальце - около 9 %; меньше 1 % натрия реабсорбируется в собирательных трубках или экскретируется с мочой. В конечных отделах канальцев концентрация натрия может снижаться до 1 ммоль/л по сравнению с 140 ммоль/л в клубочковом фильтрате. В дистальном сегменте нефрона и собирательных трубках в отличие от проксимального

сегмента всасывание происходит против высоких концентрационного и электрохимического градиентов.

Клеточные механизмы реабсорбции Na + , как и других ионов, могут существенно отличаться в разных отделах нефрона (рис. 12.9). В клетках проксимального канальца поступление натрия через люминальную мембрану внутрь клетки обеспечивается рядом механизмов. Оно может быть связано с обменом Na + на протоны (Na + /H +), а также с деятельностью натрийзависимых переносчиков аминокислот и глюкозы. В люминальной мембране клеток толстого восходящего отдела петли Генле поступление иона Na + в клетку происходит одновременно с ионом К + и двумя ионами Сl - ; эта система блокируется со стороны просвета канальца фуросемидом. В дистальном извитом канальце ведущее значение имеет прохождение иона Na + по натриевому каналу, специфическим блокатором которого является амилорид. Во всех случаях поступившие внутрь клетки ионы натрия удаляются из нее Na, К-АТФазой, локализованной в базальной плазматической мембране.

Таким образом, молекулярные механизмы реабсорбции ионов натрия не одинаковы в разных участках нефрона. Это определяет отличие скорости реабсорбции и способов регуляции переноса натрия.

Электрофизиологические исследования клеток нефрона подтверждают высказанные выше представления о пассивном и активном компонентах системы реабсорбции натрия. При реабсорбции натрий вначале входит в клетку эпителия канальца пассивно по натриевому каналу мембраны, обращенной в сторону просвета канальца; внутренняя часть клетки заряжена отрицательно, и поэтому положительно заряженный Na движется в клетку по градиенту потенциала. Натрий направляется в сторону базальной плазматической мембраны, в которой имеется натриевая помпа, выбрасывающая его в межклеточную жидкость (рис. 12.10).

Регуляция реабсорбции и секреции ионов в почечных канальцах. В регуляции реабсорбции натрия участвуют эфферентные нервные волокна, подходящие к почке, и некоторые гормоны (рис. 12.11). Вазопрессин усиливает всасывание натрия в клетках толстого восходящего отдела петли Генле. Механизм этого эффекта основан на внутриклеточном действии цАМФ. Другим стимулятором реабсорбции натрия является альдостерон, который увеличивает транспорт Na + в клетках дистальных почечных канальцев. Из внеклеточной жидкости этот гормон проникает через базальную плазматическую мембрану в цитоплазму клетки и соединяется с рецептором. Возникший комплекс поступает в ядро, где образуется комплекс альдостерона со стереоспецифичным для него хроматином.

В связывании альдостерона, по-видимому, участвует негистонный хромосомный белок, молекулы альдостерона связываются ядром почечной клетки. В ядре стимулируется транскрипция определенного участка генетического кода, синтезированная мРНК переходит в цитоплазму и активирует образование белков, необходимых для увеличения транспорта Na + .

Транспорт Na + и К + клеткой дистального извитого канальца

Альдостерон стимулирует образование компонентов натриевого насоса (Na, К-АТФазы), ферментов его энергетического обеспечения, а также веществ, облегчающих вход Na + в клетку из просвета канальца. В обычных физиологических условиях одним из факторов, ограничивающих реабсорбцию натрия, является низкая проницаемость апикальной плазматической мембраны. Возрастание числа натриевых каналов мембраны (или времени их открытого состояния) увеличивает вход натрия в клетку и повышает в ней его содержание, что стимулирует активный перенос натрия.

Уменьшение реабсорбции натрия достигается под влиянием так называемого натрийуретического гормона, выработка которого возрастает при увеличении объема циркулирующей крови, повышении объема внеклеточной жидкости в организме. Структура и место секреции этого гормона установлены лишь в последние годы, хотя мысль о его существовании была высказана в конце 50-х гг. Оказалось, что таких факторов несколько: один из них выделяется

1 - натрийуретический гормон, 2 - катехоламины, 3 - глюкортикоиды, 4 - паратгормон, 5 - кальдитонин, 6 - вазопрессин, 7 - альдостерон

в предсердии, другой - в гипоталамической области; ряд натрий-уретических веществ выделен из некоторых других органов. В настоящее время значение каждого из них в реальных процессах регуляции обмена натрия еще не ясно.

Реабсорбция ионов Сl - происходит в некоторых частях не-фрона с помощью иных механизмов, чем реабсорбция Na + , что дает возможность раздельно регулировать выделение натрия и хлора почкой. В начальных частях проксимального отдела нефрона его стенка непроницаема для ионов С1 - ионы Na всасываются вместе с НСО 3 - . В результате концентрация С1 - возрастает со 103 до 140 ммоль/л. В конечных участках проксимального канальца зона межклеточных соединений проницаема для ионов Сl - . Так как концентрация Сl - в канальцевой жидкости стала выше, чем в плазме крови, то С1 - по концентрационному градиенту движется в межклеточную жидкость и кровь. За ионами хлора следуют и ионы натрия.

Механизм реабсорбции ионов хлора в клетках толстого восходящего отдела петли Генле иной. В люминальной мембране имеется своеобразный молекулярный механизм транспорта ионов С1 - , одновременно с которыми всасываются ионы Na + и К + . В дистальном извитом канальце и собирательных трубках активно транспортируются через клетки ионы Na + , за ними по электрохимическому градиенту следуют ионы Сl - .

Различие способов реабсорбции ионов хлора имеет важное значение для понимания многообразия молекулярных механизмов реабсорбции ионов. Особенно следует подчеркнуть, что для этого процесса имеет значение не только отличие свойств ионных каналов и ионных переносчиков в люминальной мембране клеток, но и своеобразие свойств зоны клеточных контактов. В начальных участках нефрона они непроницаемы для неэлектролитов и ионов С1 - , последующие части проксимального канальца обладают высокой проницаемостью для ионов С1 - . В дистальном сегменте нефрона и собирательных трубках зона клеточных контактов очень плохо пропускает растворенные вещества, что обеспечивает возможность их экскреции почкой.

В почечных канальцах реабсорбируются калий, кальций, магний, фосфаты, сульфаты, микроэлементы. Почки являются важнейшим эффекторным органом в системе ионного гомеостаза. Новейшие данные свидетельствуют о существовании в организме систем регуляции баланса каждого из ионов. Для некоторых из ионов уже описаны специфические рецепторы, например натриорецепторы. Появились и первые данные о рефлекторной регуляции транспорта ионов в почечных канальцах, включающей рецепторы, центральные аппараты и эфферентные пути передачи сигнала почке.

Регуляцию реабсорбции ионов Са 2+ в почечных канальцах осуществляет ряд гормонов. При уменьшении концентрации кальция в крови паращитовидные железы выделяют паратгормон, который способствует нормализации уровня Са 2+ в крови за счет увеличения его реабсорбции в почечных канальцах и повышения резорбции

1 - почка, 2 - кишечник, 3 - пища, 4 - печень, 5 - плазма крови, 6 - щитовидная железа, 7 - кость, 8 - паращитовидная железа; пунктирными стрелками обозначено изменение реакции при увеличении или уменьшении концентрации кальция в крови

кости (рис. 12.12). При гиперкальциемии стимулируется выделение в кровь гормона щитовидной железы - тиреокальцитонина, который снижает концентрацию кальция в крови и способствует увеличению его экскреции почкой. Важную роль в регуляции обмена Са 2+ играет активная форма витамина D 3 - 1,25 (OH) 2- D 3 . В почечных канальцах регулируется уровень реабсорбции магния, хлора, сульфатов и других ионов.

Виды действия гормонов

Различают пять видов действия гормонов на ткани-мишени: метаболическое, морфогенетическое, кинетическое, корригирующее и реактогенное.

Метаболическое действие ― гормон вызывает изменение обмена веществ в тканях. Оно происходит за счет трех основных гормональных влияний. Во-первых, гормоны меняют проницаемость мембран клетки и органоидов, что изменяет условия мембранного транспорта субстратов, ферментов, ионов и метаболитов и, соответственно, все виды метаболизма. Во-вторых, гормоны меняют активность ферментов в клетке, приводя к изменению их структуры и конфигурации, облегчая связи с кофакторами, уменьшая или увеличивая интенсивность распада ферментных молекул, стимулируя или подавляя активацию проферментов. В-третьих, гормоны изменяют синтез ферментов, индуцируя или подавляя их образование за счет влияния на генетический аппарат ядра клетки, как прямо вмешиваясь в процессы синтеза нуклеиновых кислот и белка, так и опосредованно через энергетическое и субстратно-ферментное обеспечение этих процессов. Сдвиги метаболизма, вызываемые гормонами, лежат в основе изменения функции клеток, ткани или органа. Например, инсулин вызывает снижение уровня глюкозы в крови, адреналин, глюкоген, глюкокортикоиды – его возрастание.

Морфогенетическое действие - влияние гормонов на процессы формообразования, дифференцировки и роста структурных элементов. Осуществляются эти процессы за счет изменений генетического аппарата клетки и обмена веществ. Примерами может служить влияние соматотропина на рост тела и внутренних органов, половых гормонов - на развитие вторичных половых признаков.

Кинетическое действие - способность гормонов запускать деятельность эффектора, включать реализацию определенной функции. Например, окситоцин вызывает сокращение мускулатуры матки, адреналин запускает распад гликогена в печени и выход глюкозы в кровь, вазопрессин включает обратное всасывание воды в собирательных трубочках нефрона, без него не происходящее.

Корригирующее действие - изменение деятельности органов или процессов, которые происходят и в отсутствие гормона. Примером корригирующего действия гормонов является влияние адреналина на частоту сердечных сокращений, активация окислительных процессов тироксином, уменьшение обратного всасывания ионов калия в почках под влиянием альдостерона. Разновидностью корригирующего действия является нормализующий эффект гормонов, когда их влияние направлено на восстановление измененного или даже нарушенного процесса. Например, при исходном превалировании анаболических процессов белкового обмена глюкокортикоиды вызывают катаболический эффект, но если исходно преобладает распад белков, глюкокортикоиды стимулируют их синтез.

Реактогенное действие гормонов - способность гормона менять реактивность ткани к действию того же гормона, других гормонов или медиаторов нервных импульсов. Так, например, кальцийрегулирующие гормоны снижают чувствительность дистальных отделов нефрона к действию вазопрессина, фолликулин усиливает действие прогестерона на слизистую оболочку матки, тиреоидные гормоны усиливают эффекты катехоламинов. Разновидностью реактогенного действия гормонов является пермиссивное действие, означающее способность одного гормона давать возможность реализоваться эффекту другого гормона. Так, например, глюкокортикоиды обладают пермиссивным действием по отношению к катехоламинам, т.е. для реализации эффектов адреналина необходимо присутствие малых количеств кортизола, инсулин обладает пермиссивным действием для соматотропина (гормона роста) и др. Особенностью гормональной регуляции является то, что реактогенное действие гормоны могут реализовать не только в тканях-мишенях, где концентрация рецепторов к ним высока, но и в других тканях и органах, имеющих единичные рецепторы к гормону.

Регуляция работы почек, как важного органа, поддерживающего гомеостаз, осуществляется нервным, гуморальным путем и саморегуляцией. Почки обильно снабжены волокнами симпатической нервной системы и парасимпатической (окончания блуждающего нерва). При раздражении симпатических нервов уменьшается количество притекающей к почкам крови, давление в клубочках падает, в результате мочеобразование уменьшается. Резко уменьшается образование мочи при болевых раздражениях из-за резкого сужения сосудов. Раздражение блуждающего нерва приводит к усилению мочеобразования. Однако даже при полном пересечении всех нервов, подходящих к почке, она продолжает работать почти нормально, что свидетельствует о высокой способности почки к саморегуляции. Саморегуляция осуществляется выработкой самой почкой биологически активных веществ: ренина, эритропоэтина, простагландмиов. Эти вещества регулируют кровоток в почках, процессы фильтрации и всасывания.

Гуморальная регуляция работы почек осуществляется рядом гормонов:

Вазопрессин (антидиуретическийтормон), вырабатываемый гипоталамусом, усиливает обратное всасывание воды в канальцах нефронов

Альдосгерон - гормон коры надпочечников - усиливает всасывание ионов Na+ и К+

Тироксин - гормон щитовидной железы - усиливает мочеобразование

Адреналин - гормон надпочечников - вызывает уменьшение мочеобразования.

Мочеобразование регулируется нервными и рефлекторными механизмами. Почки иннервируются симпатическими и парасимпатическими волокнами, отходящими от спинного и продолговатого мозга. Рефлекторное влияние на функцию почек осуществляется также гипоталамической областью и корой головного мозга. Влияние нервной системы на моче-образование доказывается следующими опытами: если вызывать болевое раздражение у животных, то образование мочи уменьшается вплоть до полного прекращения ее выделения. Причем, может наблю­даться условнорефлекторная анурия. При растяжении одного мочеточника также наблюдается торможение образования мочи в обоих почках. Далее было показано, что задержку мочеиспускания можно получить при раздражении хеморецепторов синокаротидных сосудистых зон. Укол в дно четвертого желудочка, в зрительный или серый бугры вызывают усиление мочеобразования. По-видимому, все эти влияния должны быть отнесены к типу защитных рефлексов, имеющих небольшое значение в жизнедеятельности организма.

Гораздо большее значение имеет влияние на почки, поддерживающие постоянство внутренней среды. К ним относятся осморегулирующие рефлексы, обеспечивающие постоянство концентрации ионного состава и других активных веществ, а также регулирующие общий объем внеклеточной воды. Несомненно, что эти важнейшие регуляции осуществляются по типу рефлексов. Исследования показывают, что при полной денервации почек нарушение их деятельности наступает лишь на первое время после операции: через 1-2 дня функция денервированных почек восстанавливается. Следовательно, функция почек существенно не зависит от нервной системы. На это указывают также и опыты с пересадкой no-чек: если почку пересадить в другую область организма, то выделительная функция ее не нарушается.

Однако, опыты с пересадкой почек не означают, что нервная система не влияет на их функции. Так, нормальные почки на введение салициловых препаратов отвечают выделением мочевой кислоты, а де-нервированные почки исключают эту реакцию. Или достаточно охладить животное, у которого денервирована одна почка, то наблюдается длительное уве-личение выделения мочи (полиурия).

Нервная система действует на почки двояко. Во-первых на кровеносные сосуды, во-вторых, на всасывающую способность клеток почечных канальцев. Так если раздражать симпатические нервы, иннервирующие почки, то образование количества мочи уменьшается. Это происходит потому, что суживаются приносящие сосуды, давление в них падает и образование мочи уменьшается. Если же суживаются выносящие сосуды, то давление в приносящих сосу-дах клубочка увеличивается и мочеобразование возрастает. На этом основан мочегонный эффект кофеина. Непосредственное влияние нервной системы на обратный транспорт канальцевого эпителия проявля-ется при раздражении симпатических волокон, когда наблюдается увеличение реабсорбции воды в канальцах. Дальнейшие наблюдения показали, что денервированная почка не только сохраняет свою способность в мочеобразовании, но и по-прежнему реагирует на все экстеро- и интерораздражители. Сохраняются также и условные рефлексы, выработанные на животных до операции.

Указанные опыты свидетельствуют о том, что регулирующие влияние ЦНС могут осуществляться на почку не только нервным путем, но и гуморально, особенно через железы внутренней секреции. Доказано, что на функцию почек оказывают влияние гормоны гипоталамуса, надпочечников и щитовидной железы. Наиболее изученными являются действия гипоталамуса, который выделяет гормон вазопрессин. В отсутствии этого гормона совершенно пре­кращается обратное всасывание воды в канальцах. Вазопрессин регулирует обратный транспорт воды в дистальном отделе нефрона. Большое значение в функции почек играют надпочечники, в которых выделяется гормон альдостерон, регулирующий обратный транспорт ионов натрия в канальцевом аппарате почек. Гормоны щитовидной железы (тироксин, трийодтиронин) являются антагонистами гормона вазопрессина.

Особая роль почек заключается в регуляции постоянства состава крови в отношении воды и ионов. В основе этой деятельности лежит осморегулирующий рефлекс. Этот рефлекс проявляется следующим образом: если под влиянием поступления солей увеличивается осмотическое давление крови, то стимулируется синтез вазопрессина и обратный транспорт воды в организме возрастает, за счет чего сохраняется осмотическое давление. Если же в организм по­ступает большое количество воды, то синтез вазопрессина уменьшается и обратное всасывание воды тормозится, в результате чего сохраняется также осмотическое давление.

Аналогичным образом действует гормон альдостерон. Так если в организм поступает большое количество солей, то выработка альдостерона угнетается и обратное всасывание натрия уменьшается, при этом сохраняется постоянство осмотического давления. Если же в организм поступает большое количество воды, то синтез этого гормона возрастает, что сопровождается увеличением обратного транспорта натрия в кровь, что также поддерживает осмотиче­ский гомеостаз.

Образовавшаяся в почках моча по мочеточникам поступает в мочевой пузырь. Выведение мочи из мочевого пузыря происходит периодически, в то время как образование мочи идет непрерывно. Как только моча из лоханки почек поступает в мочеточники, начинается их волнообразные сокращения с чистотой 2-5 волн за одну минуту. Волна сокращения распространяется по мочеточнику со скоростью 2-3 см в секунду. Эти сокращения связаны с автоматическими свойствами гладкой мускулатуры мочеточников. Мочевой пузырь представляет собой полый мышечный орган, служащий резервуаром для скопления мочи. Опорожнение мочевого пузыря происходит периодически по мере его наполнения. У места вывода мочеточника из мочевого пузыря имеется кольцевая мускулатура - мочевой сфинктер, состоящий из гладких мышц. Несколько ниже этого сфинктера в мочеиспускательном канале имеется второй сфинктер, состоящий из поперечно-полосатых мышц. Во время мочеиспускания сфинктеры расслабляются, а мышцы стенки мочевого пузыря сокращаются, в результате чего происходит опорожнение мочевого пузыря.

Первые позывы на опорожнение мочевого пузыря происходят тогда, когда количество мочи достигает 200-300 мл, а давление в нем возрастает до 150-200 мм. вод. столба. Мочеиспускание представляет собой сложнорефлекторный акт, заключающийся в сокращении мышц стенки мочевого пузыря и расслабления сфинктеров. Этот рефлекс возникает под влиянием импульсов, поступающих в спинной мозг от мочевого пузыря к мочевыделительному центру. От этого центра поступает информация к органам мочевыделения, которые и осуществляют выделение мочи из мочевого пузыря. Спинальные мочеотделительные центры находятся под контролем коры головного мозга, поэтому акт мочеиспускания является произвольным, исключая детей определенного возраста.

Мочевыводящий аппарат иннервируется вегетативным отделом нервной системы. Симпатические волокна усиливают волнообразные сокращения мочеточников, но тормозят сокращения стенки мочевого пузыря. При этом тонус сфинктеров повышается. Следовательно, симпатические нервы способствуют наполнению мочевого пузыря. Парасимпатические волокна оказывают противоположное влияние: под влиянием парасимпатических волокон увеличиваются сокращения мышц мочевого пузыря, а сфинктеры расслабляются. Таким образом, парасимпатические влияния способствую опорожнению мочевого пузыря.

Корковый контроль проявляется в задержке или усилении мочеиспускания. В опорожнении мочевого пузыря большое значение имеют мышцы брюшного пресса, при сокращении которых усиливается выделение мочи из мочевого пузыря.

Зрительный анализатор включает в себя - периферическую часть (глазное яблоко), проводящий отдел (зрительные нервы, подкорковые зрительные центры) и корковую часть анализатора (затылочная доля коры больших полушарий).

Основной слой сетчатки глаза - фоторецептор (колбочки и палочки). Они обладают разной чувствительностью к цвету и свету: колбочки слабочувствительны к свету, колбочки - обеспечивают цветное восприятие мира. Палочки - не чувствительны к цвету, но чувствительны к свету (именно они обеспечивают сумеречное зрение – восприятие окружающего мира в черно-белом цвете в условиях слабой освещености).

Теория восприятия света. Когда лучи света попадают на сетчатку, в ней происходит ряд химических превращений, связанных с образованием зрительных пигментов: родопсина (содержится в палочках) и иодопсина (содержится в колбочках). В результате энергия света превращается в электрические сигналы - импульсы. Так, родопсин под влиянием света претерпевает ряд химических изменений - превращается в ретинол (альдегид витамина А) и белковый остаток - опсин. Затем под влиянием фермента (редуктазы) альдегид переходит в витамин А, который поступает в пигментный слой. В темноте происходит обратная реакция - витамин А восстанавливается до альдегида и происходит ресинтез родопсина.

Процесс цветного зрения связан с колбочками. Химические преобразования иодопсина и др. пигментов под действием света разной длины волн вызывает ряд электрофизических реакций связанных с восприятием цвета.

В темноте наблюдается явление - темновая адаптация (вначале колбочки, затем - палочки), что связано с восстановлением витамина А.

Цветное зрение. Наиболее принята теория трехцветного зрения. В колбочках различают до 400-800 дисков. Верхняя часть дисков воспринимает оранжевый цвет (длина волны 555 -570 нм); средняя - зеленый (длина волны 525-535 нм); нижняя - фиолетовый (длина волны 445-450 нм). Это основные цвета. Их смешивание дает все остальные цвета.

Слуховой анализатор воспринимает колебания воздуха и трансформирует механическую энергию этих колебаний в импульсы, которые в коре головного мозга воспринимаются как звуковые ощущения.

Воспринимающая часть слухового анализатора включает - наружное, среднее и внутреннее ухо (рис. 11.8.)- Наружное ухо представлена ушной раковиной (звукоуловитель) и наружным слуховым проходом, длина которого составляет 21- 27 мм, а диаметр 6-8 мм. Наружное и среднее ухо разделяет барабанная перепонка - мало податливая и слабо растягиваюшаяся мембрана.

Среднее ухо состоит из цепи соединенных между собой косточек: молоточек, наковальня и стремечко. Рукоятка молоточка прикрепляется к барабанной перепонке, основание стремечка - к овальному окну. Это своеобразный усилитель который в 20 раз усиливает колебания. В среднем ухе, кроме того, имеется две маленькие мышцы, прикрепляющиеся к косточкам. Сокращение этих мышц приводит к уменьшению колебаний. Давление в среднем ухе выравнивается за счет евстахиевой трубы, которая открывается в ротовую полость.

Внутреннее ухо соединено со средним при помощи овального окна, к которому прикрепляется стремечко. Во внутреннем ухе находится рецепторный аппарат двух анализаторов - воспринимающего и слухового (рис. 11.9.). Рецепторный аппарат слуха представлен улиткой. Улитка, длиной 35 мм и имеющая 2,5 завитка, состоит из костной и перепончатой части. Костная часть разделена двумя мембранами: основной и вестибулярной (рейснеровой) на три канала (верхний - вестибулярный, нижний - тимпанический, средний - барабанный). Средняя часть, называется улиточный ход (перепончатый). У верхушки - верхние и нижние каналы связаны геликотремой. Верхние и нижние каналы улитки заполнены перилимфой, средние - эндолимфой. Перилимфа по ионному составу напоминает плазму, эндолимфа - внутриклеточную жидкость (в 100 раз больше ионов К и в 10 раз ионов Na). Основная мембрана состоит из слабо натянутых эластических волокон, поэтому может колебаться. На основной мембране - в среднем канале расположены звуковоспринимающие рецепторы - кортиев орган (4 ряда волосковых клеток - 1 внутренний (3,5 тыс. клеток) и 3 наружных - 25-30 тыс. клеток). Сверху - тектореальная мембрана. Механизмы проведения звуковых колебаний. Звуковые волны пройдя через наружный слуховой проход колеблют барабанную перепонку, последняя приводит в движение косточки и мембрану овального окна. Колеблется перилимфа и к вершине колебания затухают. Колебания перилимфы передаются на вестибулярную мембрану, а последняя начинает ко-лебать эндолимфу и основную мембрану.

В улитке регистрируется: 1) Суммарный потенци-ал (между кортиевым органом и средним каналом - 150 мВ). Он не связан с проведением звуковых коле-баний. Он обусловлен уравнем окислительно-восстановительных процессов. 2) Потенциал действия слухового нерва. В физиологии также известен и третий - микрофонный - эффект заключающий в ледующем: если в улитку ввести электроды и соеди-нить с микрофоном, предварительно усилив его, и произносить в ухо кошке различные слова, то мик-рофон воспроизводит эти же слова. Микрофонный эффект генерируется поверхностью волосковых клеток, т. к. деформация волосков приводит к появле-нию разности потенциалов. Однако, этот эффект превосходит энергию вызвавших его звуковых колебаний. Отсюда микрофонный потенциал – непростое преобразование механической энергии в электрическую, а связан с обменными процессами в волосковых клетках. Местом возникновения микрофонного потенциала является область корешков волосков волосковых клеток. Звуковые колебания, действующие на внутреннее ухо, накладывают возникающий микрофонный эффект на эндокохлеарный потенциал.

Суммарный потенциал отличается от микрофонного тем, что отражает не форму звуковой волны, а ее огибающую и возникает при действии на ухо высокочастотных звуков (рис. 11.10). Потенциал действия слухового нерва генерируется езультате электрического возбуждения, возникающего в волосковых клетках в виде микрофонного эффекта и суммарного потенциала.

Между волосковыми клетками и нервными окончаниями имеются синапсы, при этом имеет место и химический и электрический механизмы передачи. Механизм передачи звука различной частоты. В течение длительного времени в физиологии господствовала резонаторная теория Гельмгольца: на основной мембране натянуты струны различной дли-ны, подобно арфе они имеют разную частоту колебаний. При действии звука начинает колебаться та часть мембраны, которая настроена в резонанс данной частоте. Колебания натянутых нитей раздражают соответствующие рецепторы. Однако, эта теория критикуется, т. к. струны не натянуты и их колебания в каждый данный момент включают слишком много волокон мембраны.

Заслуживает внимания теория Бекеше. В улитке имеется явление резонанса, однако, резонирующим субстратом являются не волокна основной мембраны, а столб жидкости определенной длины. По данным Бекеше, чем больше частота звука, тем меньше длина колеблющегося столба жидкости. При действии звуков низкой частоты длина колеблющегося столба жидкости увеличивается, захватывая большую часть основной мембраны, причем колеблются не отдельные волокна, а значительная их часть. Каждой высоте тона соответствует определенное количество рецепторов.

В настоящее время наиболее распространенной теорией восприятия звука разной частоты является "теория места",согласно которой не исключается участие воспринимающих клеток в анализе слуховых сигналов. Предполагается что волосковые клетки, расположенные на различных участках основной мембраны обладают различной лабильностью, что оказывает влияние на звуковые восприятия, т. е. речь идет о настройке волосковых клеток на звуки разной частоты.

Повреждения в различных участках основной мембраны приводит к ослаблению электрических явлений, возникающих при раздражении звуков разной частоты.

Антиноцицептивная система

Переносимость боли очень индивидуальна. Субъективную оценку боли в значительной мере определяют и обстоятельства, в которых она возникла. Например, спортсмены могут не испытывать сильной боли даже при тяжелых переломах. Раненные в бою легко переносят такие травмы, которые в мирной жизни вызвали бы мучительную боль. Вера, что боль пройдет, дает сильный анальгетический эффект. С другой стороны, многие находят невыносимой даже такую безобидную процедуру, как венепункция. Боль может появиться от одного только ее ожидания - без болевого раздражителя.

Поскольку психологические факторы играют столь важную роль в восприятии боли, должны существовать соответствующие нейронные системы, способные модулировать болевую чувствительность. Таких систем, скорее всего, несколько, но изучена пока только одна. Она включает гипоталамус, а также структуры среднего и продолговатого мозга, которые направляют волокна к ноцицептивным нейронам спинного мозга и влияют на их активность. Эта система подавляет болевую чувствительность и поэтому называется антиноцицептивной системой (рис. 12.4 , Б).

Показано, что антиноцицептивная система опосредует обезболивающее действие наркотических анальгетиков. Нa всех ее структурах обнаружены опиатные рецепторы. Разрушение этих структур уменьшает обезболивающий эффект наркотических анальгетиков - например, морфина. Кроме того, нейроны антиноцицептивной системы выделяют эндогенные опиоиды - энкефалины и бета-эндорфин.

Антиноцицептивная система активируется при длительной боли, тревоге и страхе. Показано, что эндогенные опиоиды выделяются после хирургических операций, а также у больных, которые вместо анальгетиков получают плацебо.

Ноцицептивная система (система восприятия боли)

Ноцицептивная система - комплекс структур периферической и центральной нервной системы - система восприятия боли, отвечающая за определение локализации и характера повреждения ткани.

Кора больших полушарий головного мозга. Кора больших полушарий головного мозга является

наиболее молодым в филогенетическом отношении отделом мозга. Она представляет собой слой серого вещества, толщина которого колеблется от 1,5 до 3 мм. За счет большого количества складок площадь коры головного мозга составляет 1450-1700 кв.см. Кора больших полушарий является высшим интеграгивным центром регуляции процессов, протекающих в организме. Это доказывается характерными нарушениями, которые наблюдаются после декортикации. Такие животные уподобляются животным, находящимся на более низких стадиях эволюции. Причем чем более развито и совершенно животное, тем на большее количество ступеней эволюционного развития оно опускается. Максимальная деградация наблюдается у человека, лишенного коры (врожденно или в результате травмы), что, как правило, несовместимо с жизнью.

Вопрос о локализации функций в коре больших полушарий в связи с этим приобретает большое значение. Какие облает коры ответственны за восприятие ощущений, регуляцию простых и сложных движений? Принимает ли участие кора в механизмах памяти, сна, бодрствования и внимания? Какова роль коры в механизмах сознания и мышления, а также в регуляции функций внутренних органов и многих других процессов?

Первыми получили многие сведения о локализации функций в коре мозга морфологи и клиницисты. Морфологи показали, что цитоархитектоника коры изменяется не только по вертикали, по и по горизонтали. Это значит, что в разных участках коры она имеет специфическое строение. Морфологические особенности с [роения различных отделов коры мозга позволили разделить ее на несколько зон (карта Бродмана - 50 полей).

Клиницисты доказали, что у человека многие участки коры больших полушарий имеют строго локализованные функции. Так, в области третьей левой лобной извилины расположен участок, относящийся в функции речи, в височной доле - центр слуха, в затылочной - зрения. Однако, в силу большой пластичности мозга и за счет перекрытия границ специфических зон в случае повреждения даже больших участков мозга функции этих отделов постепенно могут восстанавливаться.

В настоящее время принято разделять кору на сенсорную, двигательную и ассоциативную.

Все первичные сенсорные области имеют определенные функции. Например, соматические сенсорные зоны, слуховые или зрительные имеют точную пространственную локализацию точек, получающих импульсы от определенных периферических рецепторов. Раздражение разных точек коры вызывает ощущения в разных участках тела. При раздражении моторных корковых зон, где расположены клетки Беца (передняя центральная извилина), возникают двигательные реакции строго определенных мышц тела.

Первичная соматосенсорная кора обеспечивает восприятие только простых ощущений, а анализ всей полноты сенсорного восприятия осуществляется многими отделами мозга в тесном взаимодействии с соматоееисорными зонами (при раздражении таких зон слышим звук, но не слово или музыкальную ((зразу). При разрушении первичных сенсорных зон возникает полная неспособность анализировать поступающую информацию (слепота, глухота и пр.).

По всей границе с первичными сенсорными зонами (на расстоянии 1-5 см) располагаются зоны, называемые вторичными сенсорными зонами. Их разрушение вызывает заметное снижение способности мозга анализировать различные характеристики образов (потеря способности понимать значение слов, интерпретировать зрительные образы и т.п.). Особенно большое значение в этом плане имеет височная доля и угловая извилина. После обширного повреждения этих областей человек слышит и может различать слова, но не способен связать эти слова в законченную мысль, не может понимать их смысла. Электрическое раздражение этих областей у человека, находящегося в сознании, вызывает возникновение сложных мыслей, включая те, которые содержатся в его памяти. Отсюда следует, что у человека сложные образы, фиксированные в памяти, сохраняются в височной доле и угловой извилине.

Функциональная асимметрия мозга. Функции височной доли и угловой извилины, связанные с речью и мышлением, обычно хорошо развиты лишь в одном полушарии, которое получило название доминантного. Предполагается, что в процессе постнатального онтогенеза человека возбуждение в результате проторения преимущественно направляется в одно и то же полушарие, чаще в левое. В результате этого более сильное развитие претерпевает именно левое полушарие, которое и становится доминантным, У 90% людей доминантно левое полушарие, у остальных - или правое, или оба развиты одинаково и эквивалентно. Связанные с доминантной височной долей определенные отделы моторной и соматосенсорной коры, контролирующие произвольные моторные функции, становятся также доминантными, благодаря этому большинство людей - праворуки. Разрушение доминантной зоны у взрослых людей сопровождается сильным нарушением интеллекта и кратковременной памяти. Компенсация возможна лишь частично.

Другим проявлением функциональной асимметрии мозга является то, что левое полушарие ответственно преимущественно за логическое, абстрактное мышление, речь, а правое - связано с образным мышлением, осуществляя высшую нервную деятельность в основном в сфере первой сигнальной системы.

Доминантность полушария

Функциональное значение полушарий различно. Одно из них доминирующее по отношению к определенным функциям. Доминантность полушария обеспечивается: генетической предрасположенностью; неодинаковым кровоснабжением полушарий; воспитанием.

Левое полушарие доминирует в отношении речи, письма, чтения, памяти (особенно зрительной), абстрактного мышления, функции счета, математических способностей.

Правое полушарие: зрительные, тактильные, распознавательные функции, память, восприятие музыки, эмоциональные

Под всасыванием понимают совокупность процессов, обеспечивающих перенос различных веществ в кровь и лимфу из пищеварительного тракта.

Различают транспорт макро- и микромолекул. Транспорт макромолекул и их агрегатов осуществляется с помощью фагоцитоза и пиноцитоза и называется эндоцитозом. Некоторое количество веществ может транспортироваться по межклеточным пространствам - путем персорбции. За счет этих механизмов из полости кишечника во внутреннюю среду проникает небольшое количество белков (антитела, аллергены, ферменты и тд.), некоторые краски и бактерии.

Из желудочно-кишечного тракта транспортируются в основном микромолекулы: мономеры питательных веществ и ионы. Этот транспорт делится на:

Активный транспорт;

Пассивный транспорт;

Облегченную диффузию.

Активный транспорт веществ - это перенос веществ через мембраны против концентрационного, осмотического и электрохимического градиентов с затратой энергии и при участии специальных транспортных систем: мобильных переносчиков, конформационных переносчиков и транспортных мембранных каналов.

Пассивный транспорт осуществляется без затраты энергии по концентрационному, осмотическому и электрохимическому градиентам и включает в себя: диффузию, фильтрацию, осмос.

Движущей силой диффузии частиц растворенного вещества является их концентрационный градиент. Разновидностью диффузии является осмос, при котором перемещение происходит в соответствии с концентрационным градиентом частиц растворителя. Под фильтрацией понимают процесс переноса раствора через пористую мембрану под действием гидростатического давления.

Облегченная диффузия, как и простая диффузия, осуществляется без затраты энергии по градиенту концентрации. Однако облегченная диффузия более быстрый процесс и осуществляется с участием переносчика.

Всасывание в различных отделах пищеварительного тракта. Всасывание происходит на всем протяжении пищеварительного тракта, но интенсивность его в разных отделах различна. В полости рта всасывание практически отсутствует вследствие кратковременного пребывания в ней веществ и отсутствия мономерных продуктов гидролиза. Однако, слизистая оболочка полости рта проницаема для натрия, калия, некоторых аминокислот, алкоголя, некоторых лекарственных веществ.

В желудке интенсивность всасывания также невелика. Здесь всасывается вода и растворенные в ней минеральные соли, кроме того в желудке всасываются слабые растворы алкоголя, глюкоза и в небольших количествах аминокислоты.

В двенадцатиперстной кишке интенсивность всасывания больше, чем в желудке, но и здесь оно относительно невелико. Основной процесс всасывания происходит в тощей и подвздошной значение в процессах всасывания, т. к. она не только способствует гидролизу веществ (за счет смены пристеночного слоя химуса), но и всасыванию его продуктов.


В процессе всасывания в тонкой кишке особое значение имеют сокращения ворсинок. Стимуляторами сокращения ворсинок являются продукты гидролиза питательных веществ (пептиды, аминокислоты, глюкоза, экстрактивные вещества пищи), а также некоторые компоненты секретов пищеварительных желез, например, желчные кислоты. Гуморальные факторы также усиливают движения ворсинок, например, гормон вилликинин, который образуется в слизистой оболочке двенадцатиперстной кишки и в тощей кишке.

Всасывание в толстой кишке в нормальных условиях незначительно. Здесь происходит в основном всасывание воды и формирование каловых масс, В небольших количествах в толстой кишке могут всасываться глюкоза, аминокислоты, а также другие легко всасывающиеся вещества. На этом основании применяют питательные клизмы, т. е. введение легкоусваивающихся питательных веществ в прямую кишку.

Всасывание продуктов гидролиза белков. Белки после гидролиза до аминокислот всасываются в кишечнике. Всасывание различных аминокислот в разных отделах тонкой кишки происходит с различной скоростью. Всасывание аминокислот из полости кишки в ее эпителиоциты осуществляется активно с участием переносчика и с затратой энергии АТФ. Из эпителиоцитов аминокислоты по механизму облегченной диффузии транспортируются в межклеточную жидкость. Всосавшиеся в кровь аминокислоты попадают по системе воротной вены в печень, где подвергаются различным превращениям. Значительная часть аминокислот используется для синтеза белка. Аминокислоты в печени дезаминируются, а часть подвергается ферментному переаминированию. Разнесенные кровотоком по всему организму аминокислоты служат исходным материалом для построения различных тканевых белков, гормонов, ферментов, гемоглобина и других веществ белковой природы. Некоторая часть аминокислот используется как источник энергии.

Интенсивность всасывания аминокислот зависит от возраста - более интенсивно оно в молодом возрасте, от уровня белкового обмена в организме, от содержания в крови свободных аминокислот, от нервных и гуморальных влияний.

Всасывание углеводов. Углеводы всасываются в основном в тонкой кишке в виде моносахаридов. С наибольшей скоростью всасываются гексозы (глюкоза, галактоза и др.), пентозы всасываются медленнее. Всасывание глюкозы и галактозы является результатом их активного транспорта через апикальные мембраны кишечных эпителиоцитов. Транспорт глюкозы и других моносахаридов активируется транспортом ионов натрия через апикальные мембраны. Глюкоза аккумулируется в кишечных эпителиоцитах. Дальнейший транспорт глюкозы из них в межклеточную жидкость и кровь через базальные и латеральные мембраны происходит пассивно по градиенту концентрации. Всасывание разных моносахаридов в различных отделах тонкой кишки происходит с различной скоростью и зависит от гидролиза Сахаров, концентрации образовавшихся мономеров, от особенностей транспортных систем кишечных эпителиоцитов.

В регуляции всасывания углеводов в тонкой кишке участвуют различные факторы, особенно железы внутренней секреции. Всасывание глюкозы усиливается гормонами надпочечников, гипофиза, щитовидной и поджелудочной желез. Усиливают всасывание глюкозы серотонин и ацетилхолин. Несколько замедляет этот процесс гистамин, а соматостатин значительно тормозит всасывание глюкозы.

Всосавшиеся в кишечнике моносахариды по системе воротной вены поступают в печень. Здесь значительная их часть задерживается и превращается в гликоген. Часть глюкозы попадает в общий кровоток и разносится по организму и используется как источник энергии. Некоторая часть глюкозы превращается в триглицериды и откладывается в жировых депо. Механизмы регуляции соотношения всасывания глюкозы, синтеза гликогена в печени, его распада с высвобождением глюкозы и потребление ее тканями обеспечивают относительно постоянный уровень глюкозы в циркулирующей крови.

Всасывание продуктов гидролиза жиров. Под действием панкреатической липазы в полости тонкой кишки из триглицеридов образуются диглицериды, а затем моноглицериды и жирные кислоты. Кишечная липаза завершает. гидролиз липидов. Моноглицериды и жирные кислоты с участием солей желчных кислот переходят в кишечные эпителиоциты через апикальные мембраны с помощью активного транспорта. В кишечных эпителиоцитах происходит ресинтез триглицеридов. Из триглицеридов, холестерина, фосфолипидов и глобулинов образуются хиломикроны - мельчайшие жировые частицы, заключенные в липопротеиновую оболочку. Хиломикроны покидают эпителиоциты через латеральные и базальные мембраны, переходят в соединительнотканные пространства ворсинок, оттуда они с помощью сокращений ворсинки переходят в ее центральный лимфатический сосуд, таким образом, основное количество жира всасывается в лимфу. В нормальных условиях в кровь поступает небольшое количество жира.

Парасимпатические влияния усиливают, а симпатические - замедляют всасывание жиров. Усиливают всасывание жиров гормоны коры надпочечников, щитовидной железы и гипофиза, а также гормоны двенадцатиперстной кишки - секретин и холецистокинин-панкреозимин.

Жиры, всосавшиеся в лимфу и кровь, поступают в общий кровоток. Основное количество липидов откладывается в жировых депо, из которых жиры используются для энергетических и пластических целей.

Всасывание воды и минеральных солей. Желудочно-кишечный тракт принимает активное участие в водно-солевом обмене организма. Вода поступает в желудочно-кишечный тракт в составе пищи и жидкостей, секретов пищеварительных желез. Основное количество воды всасывается в кровь, небольшое количество - в лимфу. Начинается всасывание воды в желудке, но наиболее интенсивно оно происходит в тонкой кишке. Некоторое количество воды всасывается по осмотическому градиенту, но она может всасываться и при отсутствии разности осмотического давления. Активно всасываемые растворенные вещества эпителиоцитами "тянут" за собой воду. Решающая роль в переносе воды принадлежит ионам натрия и хлора. Поэтому все факторы, влияющие на транспорт этих ионов, влияют и на всасывание воды. Всасывание воды сопряжено с транспортом Сахаров и аминокислот. Многие эффекты замедления или ускорения всасывания воды являются результатом изменения транспорта из тонкой кишки других веществ.

Выключение из пищеварения желчи замедляет всасывание воды из тонкой кишки. Торможение ЦНС и ваготомия замедляет всасывание воды. На процесс всасывания воды оказывают влияние гормоны:

АКТГ усиливает всасывание воды и хлоридов, тироксин повышает всасывание воды, глюкозы и липидов. Гастрин, секретин, холецистокинин-панкреозимин - ослабляют всасывание воды.

Натрий интенсивно всасывается в тонкой и подвздошной кишке. Ионы натрия переносятся из полости тонкой кишки в кровь через кишечные эпителиоциты и по межклеточным каналам. Поступление ионов натрия в эпителиоцит происходит пассивно по электрохимическому градиенту. Из эпителиоцитов через их латеральные и базальные мембраны ионы натрия активно транспортируются в межклеточную жидкость, кровь и лимфу. По межклеточным каналам транспорт ионов натрия осуществляется пассивно по градиенту концентрации.

В тонкой кишке перенос ионов натрия и хлора сопряжен, в толстой кишке идет обмен всасывающихся ионов натрия на ионы калия, При снижении содержания в организме натрия его всасывание в кишечнике резко увеличивается. Всасывание ионов натрия усиливают гормоны гипофиза и надпочечников, угнетают - гастрин, секретин и холецистокинин-панкреозимин.

Всасывание ионов калия происходит в основном в тонкой кишке с помощью пассивного транспорта по электрохимическому градиенту.

Всасывание ионов хлора происходит в желудке, а наиболее активно в подвздошной кишке по механизму активного и пассивного транспорта. Пассивный транспорт ионов хлора сопряжен с транспортом ионов натрия. Активный транспорт ионов хлора происходит через апикальные мембраны и он сопряжен с транспортом ионов натрия.

Из всасываемых в кишечнике двухвалентных катионов наибольшее значение имеют ионы кальция, магния, цинка, меди и железа.

Кальций всасывается по всей длине желудочно-кишечного тракта, однако наиболее интенсивная его абсорбция происходит в двенадцатиперстной кишке и начальном отделе тонкой кишки. В этом же отделе кишечника всасываются ионы магния, цинка и железа. Всасывание меди происходит преимущественно в желудке.

В процессе всасывания кальция участвуют механизмы облегченной и простой диффузии. Полагают, что в базальной мембране энтероцитов имеется кальциевый насос, который обеспечивает выкачивание кальция из клетки в кровь против электрохимического градиента. На всасывание кальция стимулирующее влияние оказывает желчь. Всасывание ионов магния и цинка, а также основного количества меди происходит пассивным путем.

Всасывание ионов железа осуществляется как по механизму пассивного транспорта - простая диффузия, так и по механизму активного транспорта - с участием переносчиков. При поступлении ионов железа в энтероцит они соединяются с апоферритином, в результате чего образуется металлопротеин ферритин, который является основным депо железа в организме.

Всасывание витаминов. Растворимые в воде витамины могут всасываться путем диффузии (витамин С, рибофлавин) . Витамин Bi2 всасывается в подвздошной кишке. Всасывание жирорастворимых витаминов (A, D, Е, К) тесно сопряжено с всасыванием жиров.



Похожие публикации