Преломление света. Законы преломления света. Полное внутреннее отражение. Ход лучей в линзе. Формула тонкой линзы. Построение в линзах

Преломление света широко используется в различных оптических приборах: фотоаппаратах, биноклях, телескопах, микроскопах. . . Непременной и самой существенной деталью таких приборов является линза.

Линза это оптически прозрачное однородное тело, ограниченное с двух сторон двумя сферическими (или одной сферической и одной плоской) поверхностями.

Линзы обычно изготавливаются из стекла или специальных прозрачных пластмасс. Говоря о материале линзы, мы будем называть его стеклом особой роли это не играет.

4.4.1 Двояковыпуклая линза

Рассмотрим сначала линзу, ограниченную с обеих сторон двумя выпуклыми сферическими поверхностями (рис. 4.16 ). Такая линза называется двояковыпуклой. Наша задача сейчас понять ход лучей в этой линзе.

Рис. 4.16. Преломление в двояковыпуклой линзе

Проще всего обстоит дело с лучом, идущим вдоль главной оптической оси оси симметрии линзы. На рис. 4.16 этот луч выходит из точки A0 . Главная оптическая ось перпендикулярна обеим сферическим поверхностям, поэтому данный луч идёт сквозь линзу, не преломляясь.

Теперь возьмём луч AB, идущий параллельно главной оптической оси. В точке B падения луча на линзу проведена нормаль MN к поверхности линзы; поскольку луч переходит из воздуха в оптически более плотное стекло, угол преломления CBN меньше угла падения ABM. Следовательно, преломлённый луч BC приближается к главной оптической оси.

В точке C выхода луча из линзы также проведена нормаль P Q. Луч переходит в оптически менее плотный воздух, поэтому угол преломления QCD больше угла падения P CB; луч преломляется опять-таки в сторону главной оптической оси и пересекает её в точке D.

Таким образом, всякий луч, параллельный главной оптической оси, после преломления в линзе приближается к главной оптической оси и пересекает её. На рис. 4.17 изображена картина преломления достаточно широкого светового пучка, параллельного главной оптической оси.

Рис. 4.17. Сферическая аберрация в двояковыпуклой линзе

Как видим, широкий пучок света не фокусируется линзой: чем дальше от главной оптической оси расположен падающий луч, тем ближе к линзе он пересекает главную оптическую ось после преломления. Это явление называется сферической аберрацией и относится к недостаткам линз ведь хотелось бы всё же, чтобы линза сводила параллельный пучок лучей в одну точку5 .

Весьма приемлемой фокусировки можно добиться, если использовать узкий световой пучок, идущий вблизи главной оптической оси. Тогда сферическая аберрация почти незаметна посмотрите на рис. 4.18 .

Рис. 4.18. Фокусировка узкого пучка собирающей линзой

Хорошо видно, что узкий пучок, параллельный главной оптической оси, после прохождения линзы собирается приблизительно в одной точке F . По этой причине наша линза носит название

собирающей.

5 Точная фокусировка широкого пучка действительно возможна, но для этого поверхность линзы должна иметь не сферическую, а более сложную форму. Шлифовать такие линзы дело трудоёмкое и нецелесообразное. Проще уж изготавливать сферические линзы и бороться с появляющейся сферической аберрацией.

Кстати, аберрация называется сферической как раз потому, что возникает в результате замены оптимально фокусирующей сложной несферической линзы на простую сферическую.

Точка F называется фокусом линзы. Вообще, линза имеет два фокуса, находящиеся на главной оптической оси справа и слева от линзы. Расстояния от фокусов до линзы не обязательно равны друг другу, но мы всегда будем иметь дело с ситуациями, когда фокусы расположены симметрично относительно линзы.

4.4.2 Двояковогнутая линза

Теперь мы рассмотрим совсем другую линзу, ограниченную двумя вогнутыми сферическими поверхностями (рис. 4.19 ). Такая линза называется двояковогнутой. Так же, как и выше, мы проследим ход двух лучей, руководствуясь законом преломления.

Рис. 4.19. Преломление в двояковогнутой линзе

Луч, выходящий из точки A0 и идущий вдоль главной оптической оси, не преломляется ведь главная оптическая ось, будучи осью симметрии линзы, перпендикулярна обеим сферическим поверхностям.

Луч AB, параллельный главной оптической оси, после первого преломления начинает удаляться от неё (так как при переходе из воздуха в стекло \CBN < \ABM), а после второго преломления удаляется от главной оптической оси ещё сильнее (так как при переходе из стекла в воздух \QCD > \P CB). Двояковогнутая линза преобразует параллельный пучок света в расходящийся пучок (рис. 4.20 ) и называется поэтому рассеивающей.

Здесь также наблюдается сферическая аберрация: продолжения расходящихся лучей не пересекаются в одной точке. Мы видим, что чем дальше от главной оптической оси расположен падающий луч, тем ближе к линзе пересекает главную оптическую ось продолжение преломлённого луча.

Рис. 4.20. Сферическая аберрация в двояковогнутой линзе

Как и в случае двояковыпуклой линзы, сферическая аберрация будет практически незаметна для узкого приосевого пучка (рис. 4.21 ). Продолжения лучей, расходящихся от линзы, пересекаются приблизительно в одной точке в фокусе линзы F .

Рис. 4.21. Преломление узкого пучка в рассеивающей линзе

Если такой расходящийся пучок попадёт в наш глаз, то мы увидим за линзой светящуюся точку! Почему? Вспомните, как возникает изображение в плоском зеркале: наш мозг обладает способностью продолжать расходящиеся лучи до их пересечения и создавать в месте пересечения иллюзию светящегося объекта (так называемое мнимое изображение). Вот именно такое мнимое изображение, расположенное в фокусе линзы, мы и увидим в данном случае.

Помимо известной нам двояковыпуклой линзы, здесь изображены: плосковыпуклая линза, у которой одна из поверхностей плоская, и вогнуто-выпуклая линза, сочетающая вогнутую и выпуклую граничные поверхности. Обратите внимание, что у вогнуто-выпуклой линзы выпуклая поверхность в большей степени искривлена (радиус её кривизны меньше); поэтому собирающее действие выпуклой преломляющей поверхности перевешивает рассеивающее действие вогнутой поверхности, и линза в целом оказывается собирающей.

Все возможные рассеивающие линзы изображены на рис. 4.23 .

Рис. 4.23. Рассеивающие линзы

Наряду с двояковогнутой линзой мы видим плосковогнутую (одна из поверхностей которой плоская) и выпукло-вогнутую линзу. Вогнутая поверхность выпукло-вогнутой линзы искривлена в большей степени, так что рассеивающее действие вогнутой границы преобладает над собирающим действием выпуклой границы, и в целом линза оказывается рассеивающей.

Попробуйте самостоятельно построить ход лучей в тех видах линз, которые мы не рассмотрели, и убедиться, что они действительно являются собирающими или рассеивающими. Это отличное упражнение, и в нём нет ничего сложного ровно те же самые построения, которые мы проделали выше!

Направление движения энергии световой волны определяется вектором Пойнтинга (система единиц СГС Гаусса), здесь - скорость света в вакууме, и - векторные напряженности электрического и магнитного полей. Длина вектора Пойнтинга равна плотности потока энергии, то есть количеству энергии, которое в единицу времени протекает через единичную площадку перпендикулярную вектору . В изотропной среде направление движения поверхности фиксированной фазы совпадает с направлением движения энергии световой волны. В кристалле эти направления могут не совпадать. Далее будем рассматривать изотропную среду.

Световые лучи.

Линии векторного поля , вдоль которых распространяется свет, называются лучами. Если поверхности равных фаз представляют собой параллельные плоскости, то волна называется плоской. Плоской волне соответствует параллельный пучок лучей, так как лучи в изотропной среде перпендикулярны поверхностям равных фаз. Сферической волной называется волна с поверхностями равных фаз сферической формы. Ей соответствует пучок лучей, выходящих из одной точки или собирающихся в одну точку. В этих двух случаях говорят соответственно о расходящейся и о сходящейся сферической волне.

Приближение геометрической оптики.

Если длина световой волны очень мала по сравнению со всеми размерами оптических приборов, то явлениями дифракции и интерференции можно пренебречь. Такое рассмотрение распространения света называется приближением геометрической оптики.

Геометрическая оптика обычно ограничивается рассмотрением распространения света в однородных средах и предметах, состоящих из однородных сред. Распространение света в среде с плавно изменяющимся показателем преломления описывается уравнением эйконала.

Отражение и преломление света.

Если световая волна распространяется в однородной среде без препятствий, то волна распространяется по прямым линиям - лучам. На границе раздела двух однородных сред лучи отражаются и преломляются (рис.1). Отраженный (3) и преломленный (2) лучи находятся в одной плоскости с падающим лучом (1) и перпендикуляром к границе раздела двух сред (). Угол падения равен углу отражения . Угол преломления можно найти из равенства

где и - показатели преломления первой и второй среды.

Отражение от плоского зеркала.

Плоское зеркало, как и сферическое, отражает лучи света в соответствии с законом отражения (угол падения равен углу отражения). Свет после отражения от плоского зеркала во всех смыслах распространяется так, как если бы вместо зеркала стояло окошко, а источник света располагался бы за поверхностью зеркала, за окошком. Интересно, что изображение в зеркале находится не просто в другом месте, оно вывернуто "наизнанку", при этом "правое" и "левое" меняются местами. Например, правая спираль становится левой спиралью.

Преломление света, также как и отражение, можно рассматривать, как "кажущееся" изменение положения источника света. Этот факт проявляется в кажущемся изломе прямой палки, наполовину опущенной в воду под углом к поверхности воды. Мнимое положение источника света в данном случае будет различаться для лучей, падающих на границу раздела двух сред под различными углами. По этой причине обычно избегают говорить о мнимом положении источника света при преломлении.

Призма.

В задачах с призмами поворот света призмой можно рассматривать как два последовательных преломления света на плоских гранях призмы при входе света в призму и при его выходе.

Особый интерес представляет частный случай призмы с малым углом при вершине ( на рис. 2). Такую призму называют тонкой призмой. Обычно рассматриваются задачи, в которых свет падает на тонкую призму почти перпендикулярно ее поверхности. При этом за два преломления лучи света поворачивают на малый угол в плоскости перпендикулярной ребру призмы в сторону утолщения призмы (рис. 2). Угол поворота не зависит от угла падения света в приближении малых углов падения. Это означает, что призма поворачивает "кажущееся" положение источника света на угол в плоскости перпендикулярной ребру призмы.

Из двух таких тонких призм состоит, в частности, бипризма Френеля (рис. 3), проходя через которую свет от точечного источника распространяется далее так, как если бы свет излучался двумя точечными когерентными источниками.

Оптическая ось.

Оптической осью называется прямая линия, проходящая через центры кривизны отражающих и преломляющих поверхностей. Если система имеет оптическую ось, то это центрированная оптическая система .

Линза.

Обычно прохождение света через линзу рассматривается в приближении параксиальной оптики, это означает, что направление распространения света всегда составляет малый угол с оптической осью, и лучи пересекают любую поверхность на малом расстоянии от оптической оси.

Линза может быть собирающей или рассеивающей.

Лучи, параллельные оптической оси, после собирающей линзы проходят через одну и ту же точку. Эта точка называется фокусом линзы. Расстояние от линзы до ее фокуса называется фокусным расстоянием. Плоскость, перпендикулярная оптической оси и проходящая через фокус линзы, называется фокальной плоскостью. Параллельный пучок лучей, наклоненный к оптической оси, собирается за линзой в одну точку ( на рис. 4) в фокальной плоскости линзы.

Рассеивающая линза преобразует параллельный оптической оси пучок лучей в расходящийся пучок (рис. 5). Если расходящиеся лучи продолжить назад, то они пересекутся в одной точке - фокусе рассеивающей линзы. При небольшом повороте пучка параллельных лучей точка пересечения перемещается по фокальной плоскости рассеивающей линзы.

Построение изображений.

В задачах на построение изображений подразумевается, что протяженный источник света состоит из некогерентных точечных источников. В этом случае изображение протяженного источника света состоит из изображений каждой точки источника, полученных независимо друг от друга.

Изображение точечного источника - это точка пересечения всех лучей после прохождения через систему, лучей испущенных точечным источником света. Точечный источник испускает сферическую световую волну. В приближении параксиальной оптики сферическая волна, проходя через линзу (рис. 6), распространяется и далее в виде сферической волны, но с другим значением радиуса кривизны. Лучи за линзой либо сходятся в одну точку (рис. 6а), которую называют действительным изображением источника (точка ), либо расходятся (рис. 6б). В последнем случае продолжения лучей назад пересекаются в некоторой точке , которая называется мнимым изображением источника света.

В параксиальном приближении все лучи, исходящие из одной точки до линзы, после линзы пересекаются в одной точке, поэтому для построения изображения точечного источника достаточно найти точку пересечения "удобных нам" двух лучей, эта точка и будет изображением.

Если перпендикулярно оптической оси поставить лист бумаги (экран) так, чтобы изображение точечного источника попало на экран, то в случае действительного изображения на экране будет видна светящаяся точка, а в случае мнимого изображения - нет.

Построение изображения в тонкой линзе.

Есть три луча, удобных для построения изображения точечного источника света в тонкой линзе.

Первый луч проходит через центр линзы. После линзы он не изменяет своего направления (рис. 7) как для собирающей так и для рассеивающей линзы. Это справедливо только в том случае, если среда с обеих сторон линзы имеет одинаковый показатель преломления . Два других удобных луча рассмотрим на примере собирающей линзы. Один из них проходит через передний фокус (рис. 8а), или его продолжение назад проходит через передний фокус (рис. 8б). После линзы такой луч пойдет параллельно оптической оси. Другой луч проходит до линзы параллельно оптической оси, а после линзы через задний фокус (рис. 8в).

Удобные для построения изображения лучи в случае рассеивающей линзы показаны на рис. 9а,9б.

Точка пересечения, мнимого или действительного, любой пары из этих трех лучей, прошедших линзу, совпадает с изображением источника.

В задачах по оптике иногда возникает потребность найти ход луча не для одного из удобных нам трех лучей, а для произвольного луча (1 на рис. 10), направление которого до линзы определено условиями задачи.

В таком случае полезно рассмотреть, например, параллельный ему луч (2 на рис. 10б), проходящий через центр линзы, независимо от того есть или нет такой луч на самом деле.

Параллельные лучи собираются за линзой в фокальной плоскости. Эту точку ( на рис. 10б) можно найти как точку пересечения фокальной плоскости и вспомогательного луча 2, проходящего линзу без изменения направления. Вторая точка, необходимая и достаточная для построения хода луча 1 после линзы, это точка на тонкой линзе ( на рис. 10б), в которую упирается луч 1 с той стороны, где его направление известно.

Построение изображения в толстой линзе.

Тонкая линза - линза, толщина которой много меньше ее фокусного расстояния . Если линзу нельзя считать тонкой, то каждую из двух сферических поверхностей линзы можно рассматривать как отдельную тонкую линзу.

Тогда изображение в толстой линзе можно найти как изображение изображения. Первая сферическая поверхность толстой линзы дает изображение источника как изображение в тонкой линзе. Вторая сферическая поверхность дает изображение этого изображения.

Другой подход при построении изображений состоит в том, что вводится понятие главных плоскостей центрированной оптической системы, частным случаем которой может быть толстая линза. Центрированная оптическая система, которая может состоять и из большого числа линз, полностью характеризуется двумя фокальными и двумя главными плоскостями. Полностью характеризуется в том смысле, что знание положения этих четырех плоскостей достаточно для построения изображений. Все четыре плоскости перпендикулярны оптической оси, следовательно свойства оптической системы полностью определяются четырьмя точками пересечения четырех плоскостей с оптической осью. Эти точки называются кардинальными точками системы.

Для тонкой линзы обе главные плоскости совпадают с положением самой линзы. Для более сложных оптических систем существуют формулы расчета положения кардинальных точек через радиусы кривизны поверхностей линз и показатели их преломления .

Для построения изображения точечного источника достаточно рассмотреть прохождение через оптическую систему двух удобных нам лучей и найти точку их пересечения после линзы, либо точку пересечения продолжений лучей назад (для мнимого изображения).

Построение хода лучей проводится так, как будто между главными плоскостями системы находится тонкая линза, а пространство между главными плоскостями отсутствует. Пример построения приведен на рис. 11. и - главные плоскости системы.

Задача прохождения света через центрированную оптическую систему может быть решена не только геометрическим построением хода лучей, но и аналитически. Для аналитического решения задач удобен матричный метод .

Существует два условно разных типа задач:

  • задачи на построение в собирающей и рассеивающей линзах
  • задачи на формулу для тонкой линзы

Первый тип задач основан на фактическом построении хода лучей от источника и поиска пересечения преломлённых в линзах лучей. Рассмотрим ряд изображений, полученных от точечного источника, который будем помещать на различных расстояниях от линз. Для собирающей и рассеивающей линзу существуют рассмотренные (не нами) траектории распространения луча (рис. 1) от источника .

Рис.1. Собирающая и рассеивающая линзы (ход лучей)

Для собирающей линзы (рис. 1.1) лучи:

  1. синий. Луч, идущий вдоль главной оптической оси, после преломления проходит через передний фокус.
  2. красный. Луч, идущий через передний фокус, после преломления распространяется параллельно главной оптической оси.

Пересечение любых из этих двух лучей (чаще всего выбирают лучи 1 и 2) дают ().

Для рассеивающей линзы (рис. 1.2) лучи:

  1. синий. Луч, идущий параллельно главной оптической оси, преломляется так, что продолжения луча проходит через задний фокус.
  2. зелёный. Луч, проходящий через оптический центр линзы, не испытывает преломления (не отклоняется от первоначального направления).

Пересечение продолжений рассмотренных лучей даёт ().

Аналогично , получим набор изображений от предмета, расположенного на различных расстояниях от зеркала. Введём те же обозначения: пусть — расстояние от предмета до линзы, — расстояние от изображения до линзы, — фокусное расстояние (расстояние от фокуса до линзы).

Для собирающей линзы :

Рис. 2. Собирающая линза (источник в бесконечности)

Т.к. все лучи, идущие параллельно главной оптической оси линзы, после преломления в линзе проходят через фокус, то точка фокуса и является точкой пересечения преломлённых лучей, тогда она же и есть изображение источника (точечное, действительное ).

Рис. 3. Собирающая линза (источник за двойным фокусом)

Воспользуемся ходом луча, идущего параллельно главной оптической оси (отражается в фокус) и идущего через главный оптический центр линзы (не преломляется). Для визуализации изображения введём описание предмета через стрелку. Точка пересечения преломившихся лучей — изображение (уменьшенное, действительное, перевёрнутое ). Положение — между фокусом и двойным фокусом.

Рис. 4. Собирающая линза (источник в двойном фокусе)

того же размера, действительное, перевёрнутое ). Положение — ровно в двойном фокусе.

Рис. 5. Собирающая линза (источник между двойным фокусом и фокусом)

Воспользуемся ходом луча, идущего параллельно главной оптической оси (отражается в фокус) и идущего через главный оптический центр линзы (не преломляется). Точка пересечения преломившихся лучей — изображение (увеличенное, действительное, перевёрнутое ). Положение — за двойным фокусом.

Рис. 6. Собирающая линза (источник в фокусе)

Воспользуемся ходом луча, идущего параллельно главной оптической оси (отражается в фокус) и идущего через главный оптический центр линзы (не преломляется). В этом случае, оба преломлённых луча оказались параллельными друг другу, т.е. точка пересечения отражённых лучей отсутствует. Это говорит о том, что изображения нет .

Рис. 7. Собирающая линза (источник перед фокусом)

Воспользуемся ходом луча, идущего параллельно главной оптической оси (отражается в фокус) и идущего через главный оптический центр линзы (не преломляется). Однако преломлённые лучи расходятся, т.е. сами преломлённые лучи не пересекутся, зато могут пересечься продолжения этих лучей. Точка пересечения продолжений преломлённых лучей — изображение (увеличенное, мнимое, прямое ). Положение — по ту же сторону, что и предмет.

Для рассеивающей линзы построение изображений предметов практически не зависит от положения предмета, так что ограничимся произвольным положением самого предмета и характеристикой изображения.

Рис. 8. Рассеивающая линза (источник в бесконечности)

Т.к. все лучи, идущие параллельно главной оптической оси линзы, после преломления в линзе должны проходить через фокус (свойство фокуса), однако после преломления в рассеивающей линзе лучи должны расходится. Тогда в фокусе сходятся продолжения преломившихся лучей. Тогда точка фокуса и является точкой пересечения продолжений преломлённых лучей, т.е. она же и есть изображение источника (точечное, мнимое ).

  • любое другое положение источника (рис. 9).

Фокусы линзы. В гл. IX был сформулирован закон преломления света, устанавливающий, как меняется направление светового луча при переходе света из одной среды в другую. Был рассмотрен простейший случай преломления света на плоской границе раздела двух сред.

В практических применениях очень большое значение имеет преломление света на сферической границе раздела. Основная деталь оптических приборов - линза - представляет собой обычно стеклянное тело, ограниченное с двух сторон сферическими поверхностями; в частном случае одна из поверхностей линзы может быть плоскостью, которую можно рассматривать как сферическую поверхность бесконечно большого радиуса.

Линзы могут быть изготовлены не только из стекла, но, вообще говоря, из любого прозрачного вещества. В некоторых приборах, например, применяются линзы из кварца, каменной соли и др. Заметим, что и поверхности линз могут быть также более сложной формы, например цилиндрические, параболические и т. д. Однако такие линзы применяются сравнительно редко. В дальнейшем мы ограничимся рассмотрением линз со сферическими поверхностями.

Рис. 193. Тонкая линза: - оптический центр, и - центры ограничивающих линзу сферических поверхностей

Итак, рассмотрим линзу, ограниченную двумя сферическими преломляющими поверхностями и (рис. 193). Центр первой преломляющей поверхности лежит в точке центр второй поверхности - в точке . На рис. 193 для ясности изображена линза, имеющая заметную толщину . В действительности мы будем обычно предполагать, что рассматриваемые линзы очень тонки, т. е. расстояние очень мало по сравнению с или . В таком случае точки и можно считать практически сливающимися в одной точке . Эта точка называется оптическим центром линзы.

Всякая прямая, проходящая через оптический центр, называется оптической осью линзы. Та из осей, которая проходит через центры обеих преломляющих поверхностей линзы, называется главной оптической осью, остальные - побочными осями.

Луч, идущий по какой-либо из оптических осей, проходя через линзу, практически не меняет своего направления. Действительно, для лучей, идущих вдоль оптической оси, участки обеих поверхностей линзы можно считать параллельными, а толщину линзы мы считаем весьма малой. При прохождении же через плоскопараллельную пластинку, как мы знаем, световой луч претерпевает параллельное смещение, но смещением луча в очень тонкой пластинке можно пренебречь (см. упражнение 26 после гл. IX).

Если на линзу падает световой луч не вдоль одной из ее оптических осей, а по какому-либо другому направлению, то он, испытав преломление сначала на первой ограничивающей линзу поверхности, потом на второй, отклонится от первоначального направления.

Прикроем линзу черной бумагой 1 с вырезом, оставляющим открытым небольшой участок около главной оптической оси (рис. 194). Размеры выреза мы предполагаем малыми по сравнению с и . Пустим на линзу 2 вдоль главной оптической оси ее слева направо параллельный пучок света. Лучи, идущие сквозь открытую часть линзы, преломится и пройдут через некоторую точку , лежащую на главной оптической оси, справа от линзы на расстоянии от оптического центра . Если в точке расположить белый экран 3, то место пересечения лучей изобразится в виде яркого пятнышка. Эта точка на главной оптической оси, где пересекаются после преломления в линзе лучи, параллельные главной оптической оси, называется главным фокусом, а расстояние - фокусным расстоянием линзы.

Рис. 194. Главный фокус линзы

Нетрудно показать, пользуясь законами преломления, что все лучи, параллельные главной оптической осп и проходящие через небольшую центральную часть линзы, после преломления действительно пересекутся в одной точке, названной выше главным фокусом.

Рассмотрим луч , падающий на линзу параллельно ее главной оптической оси. Пусть этот луч встречает первую преломляющую поверхность линзы в точке на высоте над осью, причем гораздо меньше, чем и (рис. 195). Преломленный луч пойдет по направлению и, преломившись снова на второй ограничивающей линзу поверхности, выйдет из линзы по направлению , составляющему с осью угол . Точку пересечения этого луча с осью обозначим через , а расстояние от этой точки до оптического центра линзы - через .

Проведем через точки и плоскости, касательные к преломляющим поверхностям линзы. Эти касательные плоскости (перпендикулярные к плоскости чертежа) пересекутся под некоторым углом , причем угол весьма мал, так как рассматриваемая нами линза - тонкая. Вместо преломления луча в линзе мы, очевидно, можем рассматривать преломление того же луча в тонкой призме , образованной проведенными нами в точках и касательными плоскостями.

Рис. 195. Преломление в линзе луча , параллельного главной оптической оси. (Толщина линзы и высота к изображены преувеличенными по сравнению с расстояниями , и в соответствии с этим в углы и на рисунке чрезмерно велики.)

Мы видели в § 86, что при преломлении в тонкой призме с преломляющим углом луч отклоняется от первоначального направления на угол, равный

где есть показатель преломления вещества, из которого сделана призма. Очевидно, угол равен углу (рис. 195), т. е.

. (88.2)

Пусть и - центры сферических преломляющих поверхностей линзы, а и - соответственно радиусы этих поверхностей. Радиус перпендикулярен к касательной плоскости, а радиус - к касательной плоскости . По известной теореме геометрии угол между этими перпендикулярами, который мы обозначим , равен углу между плоскостями:

С другой стороны, угол , как внешний угол в треугольнике , равен сумме углов и образуемых радиусами и с осью:

Таким образом, с помощью формул (88.2) - (88.4) находим

(88.5)

Мы предположили, что мала по сравнению с радиусами сферических поверхностей и и с расстоянием точки от оптического центра линзы. Поэтому углы г и также малы, и мы можем заменить синусы этих углов самими углами. Далее, благодаря тому, что линза тонкая, мы можем пренебречь ее толщиной, считая ; , а также пренебречь разницей в высоте точек и , считая, что они расположены на одной и той же высоте к над осью. Таким образом, мы можем приближенно считать, что

Подставляя эти равенства в формулу (88.5), найдем

, (88.7) от оптического центра линзы.

Таким образом, доказано, что линза имеет главный фокус, и формула (88.9) показывает, как фокусное расстояние зависит от показателя преломления вещества, из которого сделана линза, и от радиусов кривизны ее преломляющих поверхностей.

Мы предполагали, что параллельный пучок лучей падает на линзу слева направо. Существо дела не изменится, конечно, если на линзу направить такой же пучок лучей, идущих в обратном направлении, т. е. справа налево. Этот пучок лучей, параллельных главной оси, соберется снова в одной точке - втором фокусе линзы (рис. 196) на расстоянии от ее оптического центра. На основании формулы (88.9) заключаем, что , т. е. оба фокуса лежат симметрично по обе стороны линзы.

Фокус называется обычно передним фокусом, фокус - задним фокусом; соответственно этому расстояние называется передним фокусным расстоянием, расстояние - задним фокусным расстоянием.

Рис. 196. Фокусы линзы

Если в фокусе линзы поместить точечный источник света, то каждый из лучей, выйдя из этой точки и преломившись в линзе, пойдет далее параллельно главной оптической оси линзы, в согласии с законом обратимости световых лучей (см. § 82). Таким образом, из линзы выйдет в этом случае пучок лучей, параллельных главной оси.

При практическом применении полученных нами соотношений необходимо всегда помнить о сделанных при выводе их упрощающих предположениях. Мы считали, что параллельные лучи падают на линзу на очень малом расстоянии от оси. Это условие не выполняется вполне строго. Поэтому после преломления в линзе точки пересечения лучей не будут строго совпадать между собой, а займут некоторый конечный объем. Если мы поставим в этом месте экран, то получим на нем не геометрическую точку, а всегда более или менее расплывчатое светлое пятнышко.

Другое обстоятельство, которое нужно помнить, состоит в том, что мы не можем осуществить строго точечный источник света. Поэтому, поместив в фокусе линзы источник хотя бы очень малых, но всегда конечных размеров, мы не получим с помощью линзы строго параллельный пучок лучей.

В § 70 были указано, что строго параллельный пучок лучей не имеет физического смысла. Сделанные замечание показывает, что рассмотренные свойства линзы находятся в согласии с этим общим физическим положением.

В каждом отдельном случае применения линзы к определенному источнику света для получения параллельного пучка лучей или, наоборот, при применении линзы для фокусировки параллельного пучка надо специально проверять степень отступления от тех упрощающих условий, при которых выведены формулы. Но существенные черты явления преломления световых лучей в линзе эти формулы передают правильно, а об отступлениях от них речь будет идти позже.

Наиболее важное применение преломления света – это использование линз, которые обычно делают из стекла. На рисунке вы видите поперечные разрезы различных линз. Линзой называют прозрачное тело, ограниченное сферическими или плоско-сферическими поверхностями. Всякая линза, которая в средней части тоньше, чем по краям, в вакууме или газе будет рассеивающей линзой. И наоборот: всякая линза, которая в средней части толще, чем по краям, будет собирающей линзой.

Для пояснений обратимся к чертежам. Слева показано, что лучи, идущие параллельно главной оптической оси собирающей линзы, после неё «сходятся», проходя через точку F – действительный главный фокус собирающей линзы. Справа показано прохождение лучей света через рассеивающую линзу параллельно её главной оптической оси. Лучи после линзы «расходятся» и кажутся исходящими из точки F’, называемой мнимым главным фокусом рассеивающей линзы. Он не действительный, а мнимый потому, что через него лучи света не проходят: там пересекаются лишь их воображаемые (мнимые) продолжения.

В школьной физике изучаются только так называемые тонкие линзы, которые вне зависимости от их симметричности «в разрезе» всегда имеют два главных фокуса, расположенные на равных расстояних от линзы. Если лучи направлять под углом к главной оптической оси, то мы обнаружим множество других фокусов у собирающей и/или рассеивающей линзы. Эти, побочные фокусы , будут находиться в стороне от главной оптической оси, но по-прежнему попарно на равных расстояниях от линзы.

Линзой можно не только собирать или рассеивать лучи. При помощи линз можно получать увеличенные и уменьшенные изображения предметов. Например, благодаря собирающей линзе на экране получается увеличенное и перевёрнутое изображение золотой статуэтки (см. рисунок).

Опыты показывают: отчётливое изображение возникает, если предмет, линза и экран расположены на определённых расстояниях друг от друга. В зависимости от них изображения могут быть перевёрнутыми или прямыми, увеличенными или уменьшенными, действительными или мнимыми.

Ситуация, когда расстояние d от предмета до линзы больше её фокусного расстояния F, но меньше двойного фокусного расстояния 2F, описана во второй строке таблицы. Именно это мы и наблюдаем со статуэткой: её изображение действительное, перевёрнутое и увеличенное.

Если изображение действительное, его можно спроецировать на экран. При этом изображение будет видно из любого места комнаты, из которого виден экран. Если изображение мнимое, то его нельзя спроецировать на экран, а можно лишь увидеть глазом, располагая его определённым образом по отношению к линзе (нужно смотреть «в неё»).

Опыты показывают, что рассеивающие линзы дают уменьшенное прямое мнимое изображение при любом расстоянии от предмета до линзы.



Похожие публикации