Зрительная сенсорная система. Зрительная система

Сенсорной системой(анализатором) - называют часть нервной системы, состоящую из воспринимающих элементов - сенсорных рецепторов, нервных путей, передающих информацию от рецепторов в мозг и частей мозга, которые перерабатывают и анализируют эту информацию

В сенсорную систему входят 3 части

1. Рецепторы - органы чувств

2. Проводниковый отдел, связывающий рецепторы с мозгом

3. Отдел коры головного мозга, которая воспринимает и обрабатывает информацию.

Рецепторы - периферическое звено, предназначенное для восприятия раздражителей внешней или внутренней среды.

Сенсорные системы имеют общий план строения и для сенсорных систем характерна

Многослойность - наличие нескольких слоев нервных клеток, первый из которых связан с рецепторами, а последний с нейронами моторных областей коры большого мозга. Нейроны специализированы для переработки разных видов сенсорной информации.

Многоканальность - наличие множества параллельных каналов обработки и передачи информации, что обеспечивает детальность анализа сигналов и большую надежность.

Разное число элементов в соседних слоях , что формирует, так называемые, «сенсорные воронки»(суживающиеся или расширяющиеся) Они могут обеспечить устранение избыточности информации или, наоборот, дробный и сложный анализ признаков сигнала

Дифференциация сенсорной системы по вертикали и по горизонтали. Дифференциация по вертикали означает формирование отделов сенсорной системы, состоящих из нескольких нейронных слоев(обонятельные луковицы, кохлеарные ядра, коленчатые тела).

Дифференциация по горизонтали представляет наличие разных по свойствам рецепторов и нейронов в пределах одного слоя. Например палочки и колбочки в сетчатке глаза по-разному перерабатывают информацию.

Основной задачей сенсорной системы является восприятие и анализ свойств раздражителей, на основе которых возникают ощущения, восприятия, представления. Это составляет формы чувственного, субъективного отражения внешнего мира

Функции сенсорных систем

  1. Обнаружение сигналов. Каждая сенсорная система в процессе эволюции приспособилась к восприятию адекватных, присущих для данной системы раздражителей. Сенсорная система, например глаз, может получать разные - адекватные и неадекватные раздражения(свет или удар по глазу). Сенсорные системы воспринимают силу - глаз воспринимает 1 световой фотон(10 в -18 Вт). Удар по глазу(10 в -4 Вт). Электрический ток(10 в -11 Вт)
  2. Различение сигналов.
  3. Передача или преобразование сигналов . Любая сенсорная система работает, как преобразователь. Она преобразует одну форму энергию действующего раздражителя в энергию нервного раздражения. Сенсорная система не должна исказить сигнала раздражителя.
  • Может носить пространственный характер
  • Временные преобразования
  • ограничение избыточности информации(включение тормозных элементов, которые затормаживают соседние рецепторы)
  • Выделение существенных признаков сигнала
  1. Кодирование информации - в форме нервных импульсов
  2. Детектирование сигналов, т. е. выделение признаков раздражителя, имеющего поведенческое значение
  3. Обеспечивают опознание образов
  4. Адаптируются к действию раздражителей
  5. Взаимодействие сенсорных систем, которые формируют схему окружающего мира и одновременно позволяют нам соотносить нас самих с этой схемой, для нашего приспособления. Все живые организмы не могут существовать без восприятия информации из окружающей среды. Чем точнее организм получает такую информацию, тем будут выше его шансы в борьбе за существование

Сенсорные системы способны реагировать на неадекватные раздражители. Если попробовать клеммы батарейки, то это вызывает вкусовое ощущение - кислое, это действие электрического тока. Такая реакция сенсорной системы на адекватные и неадекватные раздражители, поставили перед физиологией вопрос - на сколько мы можем доверять нашим органам чувств.

Иоган Мюллер сформулировал в 1840 году закон специфической энергии органов чувств.

Качество ощущений не зависит от характера раздражителя, а определяется всецело заложенной в чувствительной системе специфической энергией, которая освобождается при действии раздражителя.

При таком подходе мы можем знать только, что заложено в нас самих, а не что в окружающем мире. Последующие исследования показали, что возбуждения в любой сенсорной системе возникают на основе одного источника энергии - АТФ.

Ученик Мюллера Гельмгольц создал теорию символов , в соответствии с которой он рассматривал ощущения, как символы и предметы окружающего мира. Теория символов отрицала возможность познания окружающего мира.

Эти 2 направления были названы физиологическим идеализмом. Что же собой представляет ощущение? Ощущение это субъективный образ объективного мира. Ощущения - это образы внешнего мира. Они существуют в нас и порождаются действием вещей на наши органы чувств. У каждого из нас этот образ будет являться субъективным, т.е. он зависит от степени нашего развития, опыта и каждый человек воспринимает окружающие предметы и явления по своему. Они будут являться объективными, т.е. это значит, то они существуют, независимо от нашего сознания. Раз имеется субъективность восприятия, то как решить, кто же наиболее правильно воспринимает? Где же будет истина? Критерием истины является практическая деятельность. Идет последовательное познание. На каждом этапе получается новая информация. Ребенок пробует игрушки на вкус, разбирает их на детали. Именно на основе этого глубоко опыта мы приобретаем более глубокие знания о мире.

Классификация рецепторов.

  1. Первичные и вторичные. Первичные рецепторы представляют собой рецепторное окончание, которое образовано самим первым чувствительным нейроном(Тельце Пачини, тельце Мейснера, диск Меркеля, Тельце Руффини). Этот нейрон лежит в спинальном ганглии. Вторичные рецепторы воспринимают информацию. За счет специализированных нервных клеток, которые затем передают возбуждение на нервное волокно. Чувствительные клетки органов вкуса, слуха, равновесия.
  2. Дистантные и контактные. Часть рецепторов воспринимает возбуждение при непосредственном контакте - контактные , а другие могут воспринимать раздражение на некотором расстоянии - дистантные
  3. Экстерорецепторы, интерорецепторы. Экстерорецепторы - воспринимают раздражение из внешней среды - зрение, вкус и др. и они обеспечивают на приспособление к окружающей среде. Интерорецепторы - рецепторы внутренних органов. Они отражают состояние внутренних органов и внутренней среды организма.
  4. Соматические - поверхностные и глубокие. Поверхностные - кожи, слизистых оболочек. Глубокие - рецепторы мышц, сухожилий, суставов
  5. Висцеральные
  6. Рецепторы ЦНС
  7. Рецепторы специальных чувств - зрительные, слуховые, вестибулярные, обонятельные, вкусовые

По характеру восприятия информации

  1. Механорецепторы(кожа, мышцы, сухожилия, суставы, внутренние органы)
  2. Терморецепторы(кожа, гипоталамус)
  3. Хеморецепторы(дуга аорты, каротидный синус, продолговатый мозг, язык, нос, гипоталамус)
  4. Фоторецептоыр(глаз)
  5. Болевые(ноцицептивные) рецепторы(кожа, внутренние органы, слизистые оболочки)

Механизмы возбуждения рецепторов

В случае первичных рецепторов, действие раздражителя воспринимается окончанием чувствительного нейрона. Действующий раздражитель может вызывать гиперполяризацию или деполяризацию поверхностной мембраны рецепторы в основном за счет изменения натриевой проницаемости. Повышение проницаемости к ионам натрия приводит к деполяризации мембраны и на мембране рецептора возникает рецепторный потенциал. Он существует до тех пор, пока действует раздражитель.

Рецепторный потенциал не подчиняется закону «Все или ничего», его амплитуда зависит от силы раздражителя. У него нет периода рефрактерности. Это позволяет суммироваться рецепторным потенциалам при действии последующих раздражителей. Он распространяется мелено, с угасанием. Когда рецепторный потенциал достигает критической пороговой величины, он вызывает появление потенциала действия в ближайшем перехвате Ранвье. В перехвате Ранвье возникает потенциал действия, который подчиняется закону «Все или ничего» Этот потенциал будет распространяющимся.

Во вторичном рецепторе действие раздражителя воспринимается рецепторной клеткой. В этой клетке возникает рецепторный потенциал, следствием которого будет являться выделение медиатора из клетки в синапс, который действует на постсинаптическую мембрану чувствительного волокна и взаимодействие медиатора с рецепторами приводит к образованию другого, локального потенциала, который называют генераторным . Он по своим свойства идентичен рецепторным. Его амплитуда определяется количеством выделившегося медиатора. Медиаторы - ацетилхолин, глутамат.

Потенциалы действия возникают периодически, т.к. для них характерен период рефрактерности, когда мембрана утрачивает свойство возбудимости. Потенциалы действия возникают дискретно и рецептор в сенсорной системе работает, как аналогово-дискретный преобразователь. В рецепторах наблюдается приспособление - адаптация к действию раздражителей. Есть быстроадаптирующиеся, есть медленно адаптирующиеся. При адаптация снижается амплитуда рецепторного потенциала и число нервных импульсов, которые идут по чувствительному волокну. Рецепторы кодируют информацию. Оно возможно по частоте потенциалов, по группировки импульсов в отдельные залпы и интервалами между залпами. Кодирование возможно по числу активированных рецепторов в рецептивном поле.

Порог раздражения и порог развлечения.

Порог раздражения - минимальная сила раздражителя, которая вызывает ощущение.

Порог развлечении - минимальная сила изменения раздражителя, при которой возникает новое ощущение.

Волосковые клетки возбуждаются при смещении волосков на 10 в -11 метра - 0,1 амстрема.

В 1934 году Вебер сформулировал закон, устанавливающий зависимость между первоначальной силой раздражения и интенсивностью ощущения. Он показал, что изменение силы раздражителя, етсь величина постоянная

∆I / Io = К Io=50 ∆I=52,11 Io=100 ∆I=104,2

Фехнер определили, что ощущение прямопропорционально логарифму раздражения

S=a*logR+b S-ощущение R- раздражение

S=KI в Aстепени I - сила раздражения, К и А - константы

Для тактильных рецепторов S=9,4*I d 0,52

В сенсорных системах есть рецепторы саморегуляции чувствительности рецепторов.

Влияние симпатической системы - симпатическая система повышает чувствительность рецепторов к действию раздражителей. Это полезно в ситуации опасности. Повышает возбудимость рецепторов - ретикулярная формация. В составе чувствительных нервов обнаружены эфферентные волокна, которые могут изменять чувствительность рецепторов. Такие нервные волокна есть в слуховом органе.

Сенсорная система слуха

У большинства людей, живущих в современной остановке слух прогрессивно падает. Это происходит с возрастом. Этому способствует загрязнение звуками окружающей среды - автотранспорт, дискотека и др. Изменения в слуховом аппарате становятся не обратимыми. Уши человека содержат 2 чувствительных органа. Слух и равновесие. Звуковые волны распространяются в форме сжатий и разряжений в упругих средах и при этом распространение звуков в плотных средах идет лучше, чем в газах. Звук обладает 3мя важными свойствами - высотой или частотой, мощностью, или интенсивностью и тембром. Высота звука зависит от частоты колебаний и ухо человека воспринимает с частотой от 16 до 20000 Гц. С максимальной чувствительностью от 1000 о 4000 Гц.

Основная частота звука гортани мужчины - 100 Гц. Женщины - 150 Гц. При разговоре возникают дополнительные высокочастотные звуки в форме шипения, свиста, которые исчезают при разговоре по телефону и это делает речь понятнее.

Мощность звука определяется амплитудой колебаний. Мощность звука выражают в Дб. Мощность представляет собой логарифмическую зависимость. Шепотная речь - 30 Дб, нормальная речь - 60-70 Дб. Звук транспорта - 80, шум мотора самолета - 160. Мощность звука 120 Дб вызывает дискомфорт, а 140 приводят к болезненным ощущениям.

Тембр определяется вторичными колебаниями на звуковых волнах. Упорядоченные колебания - создают музыкальные звуки. А беспорядочные колебания вызывают просто шум. Одна и та же нот звучит по разному на разных инструментах из за разных дополнительных колебаний.

Ухо человека имеет 3 составные части - наружное, среднее и внутренне ухо. Наружное ухо представлено ушной раковиной, которое действует как звука улавливающая воронка. Ухо человека менее совершенно улавливает звуки, чем у кролика, лошади, которые умеют управлять своими ушами. В основе ушной раковины - хрящ, за исключением мочки уха. Хрящевая ткань придает эластичность и форму уху. Если хрящ повреждается, то он восстанавливается разрастаясь. Наружный слуховой проход S образной формы - внутрь, вперед и вниз, длина 2,5 см. Слуховой проход покрыт кожей с малой чувствительностью наружной части и высокой чувствительностью внутренней. В наружной части слухового прохода имеются волосы, которые предупреждают попадание в слуховой проход частиц. Железы слухового прохода вырабатывают желтую смазку, которая тоже предохраняет слуховой проход. В конце прохода - барабанная перепонка, которая состоит из фиброзных волокон, покрытых снаружи кожей, а внутри - слизистой. Барабанная перепонка отделяет среднее от наружного уха. Она колеблется с частотой воспринимаемого звука.

Среднее ухо представлено барабанной полостью, объем которой равен примерно 5-6 капель воды и барабанная полость заполнена водухом, выстлана слизистой оболочкой и содержит 3 слуховые косточки: молоточек, наковальня и стремечко.среднее ухо сообщается с носоглоткой с помощью евстахиевой трубы. В состоянии покоя просвет евстахиевой трубы закрыт, что выравнивает давление. Воспалительные процессы, приводящие к воспалению этой трубы вызывают ощущение заложенности. Среднее ухо отделено от внутреннего овальным и круглым отверстием. Колебания барабанной перепонки через систему рычагов передаются стремечком на овальное окно, причем наружное ухо осуществляет передачу звуков воздушным способом.

Имеется различие площади барабанной перепонки и овального окна(площадь барабанной перепонки равна 70мм в кв. а у овального окна- 3.2мм в кв). При передаче колебания с перепонки на овальное окно амплитуда уменьшается а сила колебаний увеличивается в 20-22 раза. В частотах до 3000 Гц передается 60% Е на внутреннее ухо. В среднем ухе имеется 2 мышцы изменяющие колебания: мышца напрягающая барабанную перепонку(прикрепляется к центральной части барабанной перепонки и к рукоятке молоточка)- при увеличении силы сокращения уменьшается амплитуда; мышца стремечка- ее сокращения ограничивают колебания стремечка. Эти мышцы предупреждают травмы барабанной перепонки. Кроме воздушной передачи звуков есть и костная передача, но это сила звука не в состоянии вызвать колебания костей черепа.

Внутрее ухо

внутреннее ухо представляет собой лабиринт, состоящий из взаимосвязанных трубочек и расширений. Во внутреннем ухе располагается орган равновесия. Лабиринт имеет костную основу, а внутри располагается перепончатый лабиринт и там находится эндолимфа. К слуховой части относится улитка, она образует 2.5 оборота вокруг центральной оси и делится на 3 лестницы: вестибулярная, барабанная и перепончатая. Вестибулярный канал начинается мембраной овального окна, а заканчивается круглым окном. На вершине улитки эти 2 канала сообщаются с помощью геликокрема. А оба этих канала заполнены перилимфой. В среднем перепончатом канале располагается звуковоспринимающий аппарат — кортиев орган. Основная мембрана построена из эластических волокон, которые начинаются у основания(0.04мм) и до вершины (0.5мм). К вершине плотность волокон уменьшается в 500 раз. На основной мембране располагается кортиев орган. Он построен из 20-25 тысяч специальных волосковых клеток, расположенных на поддерживающих клетках. Волосковые клетки лежат в 3-4 ряда(наружный ряд) и в один ряд(внутренний). На вершине волосковых клеток имеются стереоцили или киноцили- самые большие стереоцили. К волосковым клеткам подходят чувствительные волокна 8 пары ЧМН от спирального ганглия. При этом 90% выделенных чувствительных волокон оказываются на внутренних волосковых клетках. На одну внутреннюю волосковую клетку конвергирует до 10 волокон. А в составе нервных волокон есть и эфферентные(оливо-улиточный пучок). Они образуют тормозные синапсы на чувствительных волокнах от спирального ганглия и иннервирует наружные волосковые клетки. Раздражение кортиевого органа связано с передачей колебаний косточек на овальное окно. Низкочастотные колебания распространяются от овального окна до вершины улитки (вовлекается вся основная мембрана).при низких частотах наблюдается возбуждение волосковых клеток лежащих на вершине улитки. Изучением распространения волн в улитке занимался Бекаши. Он обнаружил, что с увеличением частоты вовлекается меньший по протяженности столб жидкости. Высокочастотные звуки не могут вовлечь весь столб жидкости, поэтому чем больше частота, тем меньше колеблется перилимфа. Колебания основной мембраны могут возникать при передаче звуков через перепончатый канал. При колебании основной мембраны происходит смещение волосковых клеток вверх, что вызывает деполяризацию, а если вниз- волоски отклоняются внутрь, что приводит к гиперполяризации клеток. При деполяризации волосковых клеток открываются Са-каналы и Са способствует потенциалу действия, который несет информацию о звуке. Наружные слуховые клетки имеют эфферентную иннервацию и передача возбуждения идет с помощью Асh на наружных волосковых клетках. Эти клетки могут изменять свою длину: они укорачиваются при гиперполяризации и удлиняются при поляризации. Изменение длины наружных волосковых клеток влияет на колебательный процесс, что улучшает восприятие звука внутренними волосковыми клетками. Изменение потенциала волосковых клеток связано с ионным составом эндо- и перилимфы. Перилимфа напоминает ликвор, а эндолимфа имеет высокую концентрацию К(150 ммоль). Поэтому эндолимфа приобретает положительный заряд к перилифме.(+80мВ). Волосковые клетки содержат много К; они имеют мембранный потенциал и отрицательно заряженный внутри и положительный снаружи(МП=-70мВ), а разница потенциалов дает возможность проникновения К из эндолимфы внутрь волосковых клеток. Изменение положения одного волоска открывает 200-300 К- каналов и возникает деполяризация. Закрытие сопровождается гиперполяризацией. В кортиевом органе идет частотное кодирование за счет возбуждения разных участков основной мембраны. При этом было показано что звуки низкой частоты могут кодироваться числом нервных импульсов таким же количеством как и звуком. Такое кодирование возможно при восприятии звука до 500Гц. Кодирование информации звука достигается увеличением числа залпов волокон на более интенсивный звук и за счет числа активирующихся нервных волокон. Чувствительные волокна спирального ганглия оканичиваются в дорсальных и вентральных ядрах улитки продолговатого мозга. От этих ядер сигнал поступает в ядра оливы как своей так и противоположной стороны. От ее нейронов идут восходящие пути в составе латеральной петли которые подходят к нижним бугоркам четверохолмия и медиальному коленчатому телу зрительного бугра. От последнего сигнал идет в верхнюю височную извилину(извилина Гешля). Это соответствует 41 и 42 полям(первичная зона) и 22 поле(вторичная зона). В ЦНС существует топотоническая организация нейронов, то есть воспринимаются звуки с разной частотой и разной интенсивностью. Корковый центр имеет значение для восприятия, последовательности звука и пространственной локализации. При поражении 22 поля нарушается определение слов (рецептивная оппозия).

Ядра верхней оливы делят на медиальные и латеральные части. А латеральные ядра определяют неодинаковую интенсивность звуков, поступающих к обеим ушам. Медиальное ядро верхней оливы улавливает временные различия поступления звуковых сигналов. Обнаружено что сигналы от обоих ушей поступают в различные дендритные системы одного и того же воспринимающего нейрона. Нарушение слухового восприятия может проявляться звоном в ушах при раздражении внутреннего уха или слухового нерва и двумя типами глухоты: проводниковой и нервной. Первая связана с поражениями наружного и среднего уха(серная пробка).Вторая связана с дефектами внутреннего уха и поражениями слухового нерва. У пожилых людей утрачивается способность воспринимать высокочастотные голоса. За счет двух ушей можно определять пространственную локализацию звука. Это оказывается возможным, если звук отклоняется от средины положения на 3 градуса. При восприятии звуков возможно развитие адаптации за счет ретикулярной формации и эфферентных волокон(воздействием на наружные волосковые клетки.

Зрительная система.

Зрение - многозвеньевой процесс, начинающийся с проекции изображения на сетчатку глаза, затем идёт возбуждение фоторецепторов, передача и преобразование в нейронных слоях зрительной системы и заканчивается принятием высшими корковыми отделами решения о зрительном образе.

Строение и функции оптического аппарата глаза. Глаз имеет шарообразную форму, что важно для поворота глаза. Свет проходит через несколько прозрачных сред - роговицу, хрусталик и стекловидное тело, имеющие определённые преломляющие силы, выражающихся в диоптриях. Диоптрия равна преломляющей силе линзы с фокусным расстоянием 100 см. Преломляющая сила глаза при рассматривании далёких предметов - 59D, близких - 70,5D. На сетчатке образуется уменьшенное перевёрнутое изображение.

Аккомодация - приспособление глаза к ясному видению предметов на разных расстояниях. Хрусталик играет главную роль в аккомодации. При рассмотрении близких предметов ресничные мышцы сокращаются, циннова связка расслабляется, хрусталик становится более выпуклым в силу его эластичности. При рассмотрении дальних - мышцы расслаблены, связки натянуты и растягивают хрусталик, делая его более уплощённым. Ресничные мышцы иннервируются парасимпатическими волокнами глазодвигательного нерва. В норме дальняя точка ясного видения - в бесконечности, ближайшая - 10 см от глаза. Хрусталик с возрастом теряет эластичность, поэтому ближайшая точка ясного видения отодвигается и развивается старческая дальнозоркость.

Аномалии рефракции глаза.

Близорукость (миопия). Если продольная ось глаза слишком длинная или увеличивается преломляющая сила хрусталика, то изображение фокусируется перед сетчаткой. Человек плохо видит вдаль. Назначаются очки с вогнутыми стёклами.

Дальнозоркость (гиперметропия). Развивается при уменьшении преломляющих сред глаза или при укорочении продольной оси глаза. В результате изображение фокусируется за сетчаткой и чел плохо видит близкорасположенные предметы. Назначаются очки с выпуклыми линзами.

Астигматизм - неодинаковое преломление лучей в разных направлениях, обусловленное не строго сферической поверхностью роговой оболочки. Компенсируются очками с поверхностью, приближающейся к цилиндрической.

Зрачок и зрачковый рефлекс. Зрачок - отверстие в центре радужной оболочки, через которое лучи света проходят внутрь глаза. Зрачок повышает чёткость изображения на сетчатке, увеличивая глубину резкости глаза и за счёт устранения сферической аберрации. Если прикрыть глаз от света, а затем открыть его, то зрачок быстро сужается - зрачковый рефлекс. На ярком свету размер - 1,8 мм, при среднем - 2,4, в темноте - 7,5. Увеличение приводит к ухудшению качества изображения, но повышает чувствительность. Рефлекс имеет адаптационное значение. Расширяет зрачок симпатика, сужает - парасимпатика. У здоровых размеры обоих зрачков одинаковы.

Структура и функции сетчатки. Сетчатка - внутренняя светочувствительная оболочка глаза. Слои:

Пигментный - ряд отростчатых эпителиальных клеток чёрного цвета. Функции: экранирование (препятствует рассеиванию и отражению света, повышая чёткость), регенерация зрительного пигмента, фагоцитоз обломков палочек и колбочек, питание фоторецепторов. Контакт между рецепторами и пигментным слоем слабая, поэтому именно здесь происходит отслойка сетчатки.

Фоторецепторы. Колбы отвечают за цветовое зрение, их - 6-7 млн. Палки за сумеречное, их - 110-123 млн. Они расположены неравномерно. В центральной ямке - только колбы, здесь - наибольшая острота зрения. Палки чувствительнее колб.

Строение фоторецептора. Состоит из наружной воспринимающей части - наружного сегмента, с зрительным пигментом; соединительной ножки; ядерной части с пресинаптическим окончанием. Наружная часть состоит из дисков - двумембранная структура. Наружные сегменты постоянно обновляются. Пресинаптическое окончание содержит глутамат.

Зрительные пигменты. В палках - родопсин с поглощением в области 500 нм. В колбах - йодопсин с поглощениями 420 нм (синий), 531 нм (зелёный), 558 (красный). Молекула состоит из белка опсина и хромофорной части - ретиналя. Только цис-изомер воспринимает свет.

Физиология фоторецепции. При поглощении кванта света цис-ретиналь превращается в транс-ретиналь. Это вызывает пространственные изменения в белковой части пигмента. Пигмент обесцвечивается и переходит в метародопсин II, способный взаимодействовать с примембранным белком трансдуцином. Трансдуцин активируется и связывается с ГТФ, активируя фосфодиэстеразу. ФДЭ разрушает цГМФ. В результате концентрация цГМФ падает, что приводит к закрытию ионных каналов, при этом понижается концентрация натрия, приводя к гиперполяризации и возникновению рецепторного потенциала, распостраняющимся по клетке до пресинаптического окончания и вызывая уменьшение выделения глутамата.

Восстановление исходного темнового состояния рецептора. При утрате метародопсином способности взаимодействовать с трандуцином и активируется гуанилатциклаза, синтезирующая цГМФ. Гуанилатциклаза активируется падением концентрации кальция, выбрасываемого из клетки белком-обменником. В результате концентрация цГМФ повышается и она вновь связывается с ионным каналом, открывая его. При открытии в клетку идут натрий и кальций, деполяризуя мембрану рецептора, переводя его в темновое состояние, что вновь ускоряет выход медиатора.

Нейроны сетчатки.

Фоторецепторы синаптически связаны с биполярными нейронами. При действии света на медиатор уменьшается выделение медиатора, что приводит к гиперполяризации биполярного нейрона. От биполярного сигнал передаётся на ганглиозный. Импульсы от многих фоторецепторов конвергируют к одному ганглиозному нейрону. Взаимодействие соседних нейронов сетчатки обеспечивается горизонтальными и амакриновыми клетками, сигналы которых меняют синаптическую передачу межде рецепторами и биполярными (горизонтальные) и между биполярными и ганглиозными (амакриновые). Амакриновые клетки осуществляют боковое торможение между соседними ганглиозными клетками. В системе есть и эфферентные волокна, действующие на синапсы между биполярными и ганглиозными клетками, регулируя возбуждение меж ними.

Нервные пути.

1ый нейрон - биполярный.

2ой - ганглиозный. Их отростки идут в составе зрительного нерва, делают частичный перекрёст (необходимо для обеспечения каждого полушария информацией от каждого глаза) и идут в мозг в составе зрительного тракта, попадая в латеральное коленчатое тело таламуса (3ий нейрон). Из таламуса - в проекционную зону коры 17ое поле. Здесь 4ый нейрон.

Зрительные функции.

Абсолютная чувствительность. Для возникновения зрительного ощущения необходимо, чтобы световой раздражитель имел минимальную (пороговую) энергию. Палка может быть возбуждена одним квантом света. Палки и колбы мало различаются по возбудимости, но число рецепторов, посылающих сигналы на одну ганглиозную клетку различно в центре и на периферии.

Зрительная алаптация.

Приспособление зрительной сенсорной системы к условиям яркрй освещённости - световая адаптация. Обратное явление - темновая адаптация. Повышение чувствительности в темноте - поэтапное, обусловленное темновым восстановлением зрительных пигментов. Сначала восстанавливается йодопсин колб. Это мало влияет на чувствительность. Затем восстанавливается родопсин палок, что очень сильно повышает чувствительность. Для адаптации так же важны процессы изменения связей между элементами сетчатки: ослабление горизонтального торможения, приводящее к увеличению числа клеток, посылающее сигналы на ганглиозный нейрон. Влияние ЦНС тоже играет роль. При освещении одного глаза понижает чувствительность другого.

Дифференциальная зрительная чувствительность. По закону Вебера человек различит разницу в освещении, если оно будет сильнее на 1-1,5%.

Яркостной контраст происходит из-за взаимного латерального торможения зрительных нейронов. Серая полоска на светлом фоне кажется темнее серой на тёмном, так как клетки возбуждённые светлым фоном тормозят клетки, возбуждённые серой полоской.

Слепящая яркость света . Слишком яркий свет вызывает неприятное ощущение ослепления. Верхняя граница слепящей яркости зависит от адаптации глаза. Чем дольше была темновая адаптация, тем меньшая яркость вызывает ослепление.

Инерция зрения. Зрительное ощущение появляется и пропадает не сразу. От раздражения до восприятия проходит 0,03-0,1 с. Быстро следующие одно за другим раздражения сливаются в одно ощущение. Минимальная частота следования световых стимулов, при которой происходит слияние отдельных ощущений, называется критической частотой слития мельканий. На этом основано кино. Ощущения, продолжающиеся после прекращения раздражения - последовательные образы (образ лампы в темноте после её выключения).

Цветовое зрение.

Весь видимый спектр от фиолетового (400нм) до красного (700нм).

Теории. Трёхкомпонентная теория Гельмгольца. Цветовое ощущение обеспечиваемое тремя типами колб, чувствительных к одной части спектра (красной, зелёной или синей).

Теория Геринга. В колбах есть вещества чувствительные к бело-чёрному, красно-зелёному и жёлто-синему излучениям.

Последовательные цветовые образы. Если смотреть на окрашенный предмет, а затем на белый фон, то фон приобретёт дополнительный цвет. Причина - цветовая адаптация.

Цветовая слепота. Дальтонизм - расстройство, при котором невозможно различие цветов. При протанопии не различается красный цвет. При дейтеранопии - зелёный. При тританопии - синий. Диагностируется полихроматическими таблицами.

Полная потеря цветовосприятия - ахромазия, при которой всё видится в оттенках серого.

Восприятие пространства.

Острота зрения - максимальная способность глаза различать отдельные детали объектов. Нормальный глаз различает две точки, видимые под углом 1минута. Максимальная острота в области жёлтого пятна. Определяется специальными таблицами.

Орган зрения является самым важным из всех органов чувств человека, ведь около 90% информации о внешнем мире человек получает через зрительный анализатор или зрительную систему

Орган зрения является самым важным из всех органов чувств человека, ведь около 90% информации о внешнем мире человек получает через зрительный анализатор или зрительную систему. Основными функциями органа зрения являются центральное, периферическое, цветовое и бинокулярное зрение, а также светоощущение.

Человек видит не глазами, а посредством глаз, откуда информация передается через зрительный нерв в определенные области затылочных долей коры головного мозга, где формируется та картина внешнего мира, которую мы видим.

Строение зрительной системы

Зрительная система состоит из:

* Глазного яблока;

* Защитного и вспомогательного аппарата глазного яблока (веки, конъюнктива, слезный аппарат, глазодвигательные мышцы и фасции глазницы);

* Системы жизнеобеспечения органа зрения (кровоснабжение, выработка внутриглазной жидкости, регуляция гидро и гемодинамики);

* Проводящих путей – зрительного нерва, зрительного перекреста и зрительного тракта;

* Затылочных долей коры больших полушарий головного мозга.

Глазное яблоко

Глаз имеет форму сферы, поэтому к нему стала применяться аллегория яблока. Глазное яблоко – очень нежная структура, поэтому располагается в костном углублении черепа – глазнице, где частично укрыто от возможного повреждения.

Глаз человека имеет не совсем правильную шаровидную форму. У новорожденных его размеры равны (в среднем) по сагиттальной оси 1, 7 см, у взрослых людей 2, 5 см. Масса глазного яблока новорожденного находится в пределах до 3 г, взрослого человека - до 7-8 г.

Особенности строения глаз у детей

У новорожденных глазное яблоко относительно большое, но короткое. К 7-8 годам устанавливается окончательный размер глаз. Новорожденный имеет относительно большую и более плоскую, чем у взрослых, роговицу. При рождении форма хрусталика сферичная; в течение всей жизни он растет и становится более плоским. У новорожденных в строме радужки пигмента мало или совсем нет. Голубоватый цвет глазам придает просвечивающий задний пигментный эпителий. Когда пигмент начинает появляться в радужке, она приобретает свой собственный цвет.

Строение глазного яблока

Глаз располагается в глазнице и окружен мягкими тканями (жировая клетчатка, мышцы, нервы и пр.). Спереди он покрыт конъюнктивой и прикрыт веками.

Глазное яблоко состоит из трех оболочек (наружной, средней и внутренней) и содержимого (стекловидного тела, хрусталика, а также водянистой влаги передней и задней камер глаза).

Наружная, или фиброзная, оболочка глаза представлена плотной соединительной тканью. Она состоит из прозрачной роговицы в переднем отделе глаза и белого цвета непрозрачной склеры. Обладая эластическими свойствами, эти две оболочки образуют характерную форму глаза.

Функция фиброзной оболочки – проведение и преломление лучей света, а также защита содержимого глазного яблока от неблагоприятных внешних воздействий.

Роговица – прозрачная часть (1/5) фиброзной оболочки. Прозрачность роговицы объясняется уникальностью ее строения, в ней все клетки расположены в строгом оптическом порядке и в ней отсутствуют кровеносные сосуды.

Роговица богата нервными окончаниями, поэтому она очень чувствительна. Воздействие неблагоприятных внешних факторов на роговицу вызывает рефлекторное сжимание век, обеспечивая защиту глазного яблока. Роговица не только пропускает, но и преломляет световые лучи, она имеет большую преломляющую силу.

Склера – непрозрачная часть фиброзной оболочки, которая имеет белый цвет. Ее толщина достигает 1 мм, а самая тонкая часть склеры расположена в месте выхода зрительного нерва. Склера состоит в основном из плотных волокон, которые придают ей прочность. К склере крепятся 6ть глазодвигательных мышц.

Функции склеры – защитная и формообразующая. Сквозь склеру проходят многочисленные нервы и сосуды.

Сосудистая оболочка , средний слой, содержит кровеносные сосуды, по которым кровь поступает для питания глаза. Прямо под роговицей сосудистая оболочка переходит в радужную оболочку, которая и определяет цвет глаз. В центре ее находится зрачок . Функция этой оболочки – ограничивать поступление света в глаз при его высокой яркости. Это достигается сужением зрачка при высокой освещенности и расширением – при низкой.

За радужной оболочкой расположен хрусталик , похожий на двояковыпуклую линзу, который улавливает свет, когда он проходит через зрачок и фокусирует его на сетчатке. Вокруг хрусталика сосудистая оболочка образует ресничное тело, в котором заложена цилиарная (ресничнвя) мышца, регулирующая кривизну хрусталика, что обеспечивает ясное и четкое видение разноудаленных предметов.

Когда эта мышца расслаблена, прикрепленный к цилиарному телу ресничный поясок натягивается и хрусталик уплощается. Его кривизна, а следовательно и преломляющая сила, минимальна. В таком состоянии глаз хорошо видит удаленные объекты.

Чтобы рассмотреть предметы, расположенные вблизи, цилиарная мышца сокращается, а напряжение ресничного пояска ослабевает, так что хрусталик становится более выпуклым, следовательно, более сильно преломляющим.

Это свойство хрусталика менять свою преломляющую силу луча, называется аккомодацией .

Внутренняя оболочка глаза представлена сетчаткой – высо- кодифференцированной нервной тканью. Сетчатка глаза – передний край мозга, исключительно сложное как по своей структуре, так и по функциям образование.

Что интересно, в процессе эмбрионального развития сетчатка глаза формируется из той же группы клеток, что головной и спинной мозг, поэтому справедливо утверждение, что поверхность сетчатки является продолжением мозга.

В сетчатке свет преобразуется в нервные импульсы, которые по нервным волокнам передаются в мозг. Там они анализируются, и человек воспринимает изображение.

Главным слоем сетчатки является тонкий слой светочувствительных клеток – фоторецепторов . Они бывают двух видов: отвечающие на слабый свет (палочки) и сильный (колбочки).

Палочек насчитывается около 130 миллионов, и они расположены по всей сетчатке, кроме самого центра. Благодаря им человек видит предметы на периферии поля зрения, в том числе при низкой освещенности.

Колбочек насчитывается около 7 миллионов. Они расположены главным образом в центральной зоне сетчатки, в так называемом желтом пятне . Сетчатка здесь максимально утончается, отсутствуют все слои, кроме слоя колбочек. Желтым пятном человек видит лучше всего: вся световая информация, попадающая на эту область сетчатки, передается наиболее полно и без искажений. В этой области возможно лишь дневное и цветное зрение.

Под воздействием световых лучей в фоторецепторах происходит фотохимическая реакция (распад зрительных пигментов), в результате которой выделяется энергия (электрический потенциал), несущая зрительную информацию. Эта энергия в виде нервного возбуждения передается в другие слои сетчатки – на клетки-биполяры, а затем на ганглиозные клетки. При этом, благодаря сложным соединениям этих клеток, происходит удаление случайных “помех” в изображении, усиливаются слабые контрасты, острее воспринимаются движущиеся предметы.

В конечном счете, вся зрительная информация в кодированном виде передается в виде импульсов по волокнам зрительного нерва в головной мозг, его высшую инстанцию – заднюю кору, где и происходит формирование зрительного образа.

Что интересно, лучи света, проходя сквозь хрусталик, преломляются и переворачиваются, из-за чего на сетчатке возникает перевернутое уменьшенное изображение предмета. Также картинка с сетчатки каждого глаза поступает в головной мозг не целиком, а словно разрезанная пополам. Однако мы видим мир нормально.

Следовательно, дело не столько в глазах, сколько в мозге. В сущности, глаз – это просто воспринимающий и передающий инструмент. Клетки мозга, получив перевернутое изображение, переворачивают его снова, создавая истинную картину окружающего мира.

Содержимое глазного яблока

Содержимое глазного яблока – стекловидное тело, хрусталик, а также водянистая влага передней и задней камер глаза.

Стекловидное тело по весу и объему составляет примерно 2/3 глазного яблока и более чем на 99% состоит из воды, в которой растворено небольшое количество белка, гиалуроновой кислоты и электролитов. Это прозрачное бессосудистое студенистое образование, заполняющее пространство внутри глаза.

Стекловидное тело достаточно прочно связано с цилиарным телом, капсулой хрусталика, а также с сетчаткой вблизи зубчатой линии и в области диска зрительного нерва. С возрастом связь с капсулой хрусталика ослабевает.

Вспомогательный аппарат глаза

К вспомогательному аппарату глаза относят глазодвигательные мышцы, слезные органы, а также веки и конъюнктиву.

Глазодвигательные мышцы

Глазодвигательные мышцы обеспечивают подвижность глазного яблока. Их шесть: четыре прямых и две косых.

Прямые мышцы (верхняя, нижняя, наружная и внутренняя) начинаются от сухожильного кольца, расположенного у вершины орбиты вокруг зрительного нерва, и прикрепляются к склере.

Верхняя косая мышца начинается от надкостницы глазницы сверху и кнутри от зрительного отверстия, и, направляясь несколько кзади и книзу, прикрепляется к склере.

Нижняя косая мышца начинается от медиальной стенки орбиты позади нижней глазничной щели и прикрепляется к склере.

Кровоснабжение глазодвигательных мышц осуществляется мышечными ветвями глазной артерии.

Наличие двух глаз позволяет сделать наше зрение стереоскопичным (то есть формировать трехмерное изображение).

Точная и слаженная работа мышц глаза позволяет нам видеть окружающий мир двумя глазами, т.е. бинокулярно. В случае нарушения функций мышц (например, при парезе или параличе одной из них) возникает двоение или же зрительная функция одного из глаз подавляется.

Также считается, что глазодвигательные мышцы участвуют в процессе подстройки глаза к процессу видения (аккомодации). Они сжимают или растягивают глазное яблоко так, чтобы лучи, поступающие от обозреваемых объектов, будь то вдали или вблизи, могли попасть точно на сетчатку. При этом хрусталик обеспечивает более тонкую настройку.

Кровоснабжение глаза

Мозговая ткань, осуществляющая проведение нервных импульсов от сетчатки до зрительной коры, а также зрительная кора, в норме почти повсеместно имеют хорошее обеспечение артериальной кровью. В кровоснабжении этих мозговых структур участвуют несколько крупных артерий, входящих в состав каротидных и вертебрально-базилярной сосудистых систем.

Артериальное кровоснабжение головного мозга и зрительного анализатора осуществляется из трех основных источников - правой и левой внутренней и наружной сонных артерий и непарной базилярной артерии. Последняя образуется в результате слияния правой и левой позвоночных артерий, расположенных в поперечных отростках шейных позвонков.

Почти вся зрительная кора и отчасти кора прилежащих к ней теменной и височной долей, а также затылочные, среднемозговые и мостовые глазодвигательные центры снабжаемых кровью за счет вертебро-базилярного бассейна (вертебра – в переводе с латинского – позвонок).

В связи с этим нарушения кровообращения в вертебрально-базилярной системе может стать причиной нарушения функций как зрительной, так и глазодвигательной систем.

Вертебробазилярная недостаточность, или синдром позвоночной артерии, – это состояние, при котором снижается кровоток в позвоночных и базилярной артериях. Причиной этих нарушений могут быть сдавливание, повышение тонуса позвоночной артерии, в т.ч. в следствие сдавливания костной тканью (остеофиты, грыжа межпозвоночного диска, подвывих шейных позвонков и др.).

Как видите, наши глаза – это исключительно сложный и удивительный дар природы. Когда все отделы зрительного анализатора работают гармонично и без помех, окружающий нас мир мы видим ясно.

Относитесь к своим глазам бережно и внимательно!

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Значение зрительной сенсорной системы

2. Зрительный анализатор. Строение глаза

3. Рост и развитие глаза

4. Нарушение зрения: близорукость косоглазие, дальнозоркость

5. Влияние освещения на развитие нарушения зрения

6. Правила организации занятий, требующих напряжения зрения

Литература

1. Значен ие зрительной сенсорной системы

Зрение эволюционно приспособлено к восприятию электромагнитных излучений в определенной, весьма узкой части их диапазона (видимый свет). Зрительная система дает мозгу более 90% сенсорной информации. Зрение -- много звеньевой процесс, начинающийся с проекции изображения на сетчатку уникального периферического оптического прибора -- глаза. Затем происходят возбуждение фоторецепторов, передача и преобразование зрительной информации в нейронных слоях зрительной системы, а заканчивается зрительное восприятие принятием высшими корковыми отделами этой системы решения о зрительном образе.

2. Зрител ьный анализатор. Строение глаза

Глаза -- орган зрения -- можно сравнить с окном в окружающий мир. Примерно 70% всей информации мы получаем с помощью зрения, например о форме, размерах, цвете предметов, расстоянии до них и др. Зрительный анализатор контролирует двигательную и трудовую деятельность человека; благодаря зрению мы можем по книгам и экранам компьютеров изучать опыт, накопленный человечеством.

Орган зрения состоит из глазного яблока и вспомогательного аппарата. Вспомогательный аппарат -- это брови, веки и ресницы, слезная железа, слезные канальцы, глазо двигательные мышцы, нервы и кровеносные сосуды

Брови и ресницы защищают глаза от пыли. Кроме того, брови отводят стекающий со лба пот. Все знают, что человек постоянно моргает (2--5 движений веками в 1 мин). Но знают ли зачем? Оказывается, поверхность глаза в момент моргания смачивается слезной жидкостью, предохраняющей ее от высыхания, заодно при этом очищаясь от пыли. Слезную жидкость вырабатывает слезная железа. Она содержит 99% воды и 1 % соли. В сутки выделяется до I г слезной жидкости, она собирается во внутреннем углу глаза, а затем попадает в слезные канальцы, которые выводят ее в носовую полость. Если человек плачет, слезная жидкость не успевает уйти по канальцам в носовую полость. Тогда слезы перетекают через нижнее веко и каплями стекают по лицу. Глазное яблоко располагается в углублении черепа -- глазнице. Оно имеет шаровидную форму и состоит из внутреннего ядра, покрытого тремя оболочками: наружной -- фиброзной, средней -- сосудистой и внутренней -- сетчатой. Фиброзная оболочка подразделяется на заднюю непрозрачную часть -- белочную оболочку, или склеру, и переднюю прозрачную -- роговицу. Роговица представляет собой выпукло-вогнутую линзу, через которую свет проникает внутрь глаза. Сосудистая оболочка расположена под склерой. Ее передняя часть называется радужкой, в ней содержится пигмент, определяющий цвет глаз. В центре радужной оболочки находится небольшое отверстие -- зрачок, который рефлекторно с помощью гладких мышц может расширяться или сужаться, пропуская в глаз необходимое количество света. Собственно сосудистая оболочка пронизана густой сетью кровеносных сосудов, питающих глазное яблоко. Изнутри к сосудистой оболочке прилежит слой пигментных клеток, поглощающих свет, поэтому внутри глазного яблока свет не рассеивается, не отражается Непосредственно за зрачком находится двояковыпуклый прозрачный хрусталик. Он может рефлекторно менять свою кривизну, обеспечивая четкое изображение на сетчатке -- внутренней оболочке глаза. В сетчатке располагаются рецепторы: палочки (рецепторы сумеречного света, которые отличают светлое от темного) и колбочки (они обладают меньшей светочувствительностью, но различают цвета). Большинство колбочек размещается на сетчатке напротив зрачка, в желтом пятне. Рядом с этим пятном находится место выхода зрительного нерва, здесь нет рецепторов, поэтому его называют слепым пятном. Внутри глаз заполнен прозрачным и бесцветным стекловидным телом.

Сетчатка (лат. retнna ) -- внутренняя оболочка глаза, являющаяся периферическим отделом зрительного анализатора; содержит фоторецепторные клетки, обеспечивающие восприятие и преобразование электромагнитного излучения видимой части спектра в нервные импульсы, а также обеспечивает их первичную обработку.

Зри тельный нерв (лат. Nervus opticus ) -- вторая пара черепно-мозговых нервов, по которым зрительные раздражения, воспринятые чувствительными клетками сетчатки, передаются в головной мозг.

Жёлтое пятно (лат. macula lutea ) -- место наибольшей остроты зрения в сетчатке глаза позвоночных животных, в том числе человека. Имеет овальную форму, расположено против зрачка, несколько выше места входа в глаз зрительного нерва. В клетках жёлтого пятна содержится жёлтый пигмент (отсюда название). Кровеносные капилляры имеются лишь в нижней части жёлтого пятна; в средней его части сетчатка сильно истончается, образуя центральную ямку (лат. fovea ), содержащую только фоторецепторы. У большинства животных и человека в центральной ямке имеются лишь колбочковые клетки; у некоторых глубоководных рыб с телескопическими глазами в центральной ямке -- только палочковые клетки. У птиц, отличающихся хорошим зрением, может быть до трёх центральных ямок. У человека диаметр пятна около 5 мм, в центральной ямке колбочки палочкоподобны (самые длинные рецепторы сетчатки). Диаметр свободной от палочковых клеток области 500--550 мкм; колбочковых клеток здесь около 30 с половиной тыс.

Слепое пятно (оптический диск) -- имеющаяся в каждом глазу здорового человека область на сетчатке, которая не чувствительна к свету. Нервные волокна от рецепторов к слепому пятну идут поверх сетчатки и собираются в зрительный нерв, который проходит сквозь сетчатку на другую её сторону и потому в этом месте отсутствуют световые рецепторы

Хруста лик (лат. lens ) -- прозрачное тело, расположенное внутри глазного яблока напротив зрачка; являясь биологической линзой, хрусталик составляет важную часть светопреломляющего аппарата глаза. Хрусталик представляет собой прозрачное двояковыпуклое округлое эластичное образование, циркулярно фиксированное к цилиарному телу. Задняя поверхность хрусталика прилегает к стекловидному телу, спереди от него находятся радужка и передняя и задняя камеры

Зрачо к (устар. зени ца ) -- отверстие в радужной оболочке глаза позвоночных (обычно круглое или щелевидное), через которое в глаз проникают световые лучи.

Рогови ца , роговая оболочка (лат. cornea ) -- передняя наиболее выпуклая прозрачная часть глазного яблока, одна из светопреломляющих сред глаза. Роговица у человека занимает примерно 1/16 площади наружной оболочки глаза. Она имеет вид выпукло-вогнутойлинзы, обращённой вогнутой частью назад. Диаметр роговицы является почти абсолютной константой и составляет 10±0,56 мм, однако вертикальный размер обычно на 0,5--1 мм меньше горизонтального. Толщина роговицы в центральной части 0,52--0,6 мм, по краям -- 1--1,2 мм. Показатель преломления вещества роговицы 1,37, преломляющая сила -- 40 дптр. Радиус кривизны роговицы составляет около 7,8 мм. Диаметр роговицы незначительно увеличивается с момента рождения до 4 лет и с этого возраста является константой. То есть рост размеров глазного яблока опережает возрастное изменение диаметра роговицы. Поэтому y маленьких детей глаза кажутся больше, чем y взрослых.

Радужная оболочка глаза , радужка (лат. iris , из др.-греч. ?сйт «радуга») -- тонкая подвижная диафрагма глаза у позвоночных с отверстием (зрачком) в центре. Расположена за роговицей, между передней и задней камерами глаза, перед хрусталиком. Практически светонепроницаема. Содержит пигментные клетки (у млекопитающих -- меланоциты), круговые мышцы, сужающие зрачок, и радиальные, расширяющие его.

Мышцы глаза выполняют согласованные движения глазных яблок, обеспечивая качественное и объемное зрение. Глазодвигательных мышц у глаза всего шесть, из них четыре прямых и две косых, получивших такое название из-за особенностей хода мышцы в глазнице и прикрепления к глазному яблоку. Работа мышц контролируется тремя черепно-мозговыми нервами: глазодвигательным, отводящим и блоковым. Каждое мышечное волокно этой группы мышц богато снабжено нервными окончаниями, за счет чего обеспечивается особая четкость и точность в движениях. Благодаря глазодвигательным мышцам возможны многочисленные варианты движения глазных яблок, как однонаправленные: вверх, вправо и так далее; так и разнонаправленные, например, сведение глаз при работе на близком расстоянии. Суть таких движений состоит в том, чтобы за счет слаженной работы мышц одинаковое изображение предметов попадало на одинаковые участки сетчатки - макулярную область, обеспечивая хорошее зрение и ощущение глубины пространства.

Стекловидное тело -- самое объемное образование глаза, составляющее 55 % его внутреннего содержимого. У взрослого человека масса стекловидного тела 4 г, объем 3,5--4 мл. Стекловидное тело имеет шарообразную форму, несколько сплющенную в сагиттальном направлении. Его задняя поверхность прилежит к сетчатке, к которой оно фиксировано лишь у диска зрительного нерва и в области зубчатой линии у плоской части цилиарного тела. Этот участок в форме пояса шириной 2--2,5 мм называют основанием стекловидного тела.

Скле ра (от греч. уклзсьт -- твёрдый) -- белковая оболочка -- наружная плотная соединительнотканная оболочка глаза, выполняющая защитную и опорную функции. Образована собранными в пучки коллагеновыми волокнами. Составляет 5/6 фиброзной оболочки глаза. Средняя толщина от 0,3 до 1 миллиметра. Толщина склеры у детей мала настолько, что через неё просвечивает зрительный пигмент, придающий ей голубой оттенок. С возрастом толщина склеры увеличивается. Через венозный синус склеры, образованный множеством мелких полостей в зоне соединения её с роговицей, происходит отток жидкости из передней камеры глаза.

Сосудистая оболочка глаза (увеальный тракт, от лат. uva -- виноград) -- это средняя оболочка глаза, размещенная непосредственно под склерой. Мягкая, пигментированная, богатая сосудами оболочка, основными свойствами которой являются аккомодация, адаптация и питание сетчатки.

Пигментный эпителий сетчатки (англ. retinal pigment epithelium ; RPE ) -- один из десяти слоев сетчаткипозвоночных. Представляет собой слой пигментированных эпителиальных клеток, который находится вне нервной части сетчатки (pars nervosa); он обеспечивает питательными веществами фоторецепторы и плотно связан с нижележащей сосудистой оболочкой и слабо -- с фотосенсорным слоем (находится над ним). Пигментный эпителий сетчатки собственно и представляет собой пигментную часть сетчатки

Восприятие зрительных раздражений . Свет попадает в глазное яблоко через зрачок. Хрусталик и стекловидное тело служат для проведения и фокусирования световых лучей на сетчатку. Шесть глазодвигательных мышц обеспечивают такое положение глазного яблока, чтобы изображение предмета попадало бы точно на сетчатку, на ее желтое пятно. В рецепторах сетчатки происходит преобразование света в нервные импульсы, которые по зрительному нерву передаются в головной мозг через ядра среднего мозга (верхние бугры четверохолмия) и промежуточного мозга (зрительные ядра таламуса) -- в зрительную зону коры больших полушарий, расположенную в затылочной области. Начавшееся в сетчатке восприятие цвета, формы, освещенности предмета, его деталей, заканчивается анализом в зрительной зоне коры. Здесь собирается вся информация, она расшифровывается и обобщается. В результате этого складывается представление о предмете.

3. Рост и развитие глаза

Глаз человека растет приблизительно до 20--21 года, достигая при эмметропии диаметра в среднем 24 мм в сагиттальной плоскости. Глазное яблоко новорожденного и в течение первых лет жизни относительно велико по отношению ко всему телу. Наиболее интенсивный рост глазного яблока отмечается в течение первого года жизни ребенка. К двум годам глазное яблоко увеличивается приблизительно на 40 %, а к 20--21 году -- в 1,5 раза по сравнению с новорожденным. У новорожденного глаз весит 2,3 г, а у взрослого человека он тяжелее более чем в 3 раза -- 7,5 г.

Таким образом, у новорожденного масса обоих глаз по отношению к массе тела составляет 0,24 %, а у взрослого человека только 0,02 %. Затем рост глазного яблока несколько замедляется, приблизительно с 12--14-летнего возраста вновь происходит его интенсивный рост вплоть до 20--21 года Передняя камера глаза новорожденного мелкая и в норме составляет не более 2 мм, достигая глубины 3 мм, как у взрослого человека в первые месяцы жизни с началом активного функционирования сосудистой оболочки.. У новорожденного хрусталик почти шаровидной формы, очень мягкой консистенции, прозрачный и бесцветный. В течение всей жизни растут и добавляются новые хрусталиковые волокна, заключенные в замкнутом пространстве хрусталиковой сумки (капсулы). Это приводит к постепенному увеличению относительной плотности хрусталика, его массы и объема. Относительная плотность хрусталика в 20-летнем возрасте составляет 1,034, в 50 лет -- 1,072, в 90 лет -- 1,113. У взрослых экваториальный диаметр хрусталика достигает 9--10 мм, сагиттальный размер -- 3,7--5,0 мм. Толщина передней капсулы равна 11-15 мкм, задней -- 4--5 мкм. Внутренняя поверхность передней капсулы содержит однослойный, прозрачный кубический эпителий, задняя капсула эпителия лишена. Интенсивность желтоватого оттенка хрусталика с возрастом увеличивается. К 40--45-летнему возрасту ядро хрусталика становится плотным, он утрачивает свою эластичность. К этому времени происходит значительное ослабление аккомодации и возникают явления пресбиопии. К 60-летнему возрасту способность к аккомодации утрачивается почти полностью из-за выраженного склероза ядра хрусталика -- факосклероза. В этот период жизни отмечается и утолщение передней капсулы хрусталика до 17 мкм, а в парацентральной зоне -- до 25 мкм. Экваториальная (герментативная) зона существенных изменений в ее толщине в связи с возрастом не претерпевает

Новые сообщения

Расстройства аккомодации у лиц пожилого возраста чаще всего обусловлены возрастными изменениями хрусталика: его размера, массы, цвета, формы и, главное, консистенции, которые связаны в основном с особенностями его роста и биохимическими сдвигами. Постепенным уменьшением эластичности хрусталика обусловлено возрастное физиологическое ослабление объема абсолютной аккомодации, установленное F. С. Donders в 1866 г. Согласно его данным при эмметропии ближайшая точка ясного зрения с возрастом постепенно удаляется от глаза, что приводит к уменьшению объема аккомодации. В возрасте 65--70 лет ближайшая и дальнейшая точки ясного зрения совмещаются. Это означает, что аккомодационная способность глаза полностью утрачивается. Ослабление аккомодации в старческом возрасте пытаются объяснить не только уплотнением хрусталика, но и другими причинами: дегенеративными изменениями циниовой связки и уменьшением сократительной способности цилиарпой мышцы. Установлено, что с возрастом в цилиарной мышце действительно происходят изменения, способные привести к уменьшению ее силы. Отчетливые признаки инволюционной дистрофии цилиарной мышцы появляются уже в возрасте 35--40 лет. Суть дистрофических изменений в этой мышце, которые медленно нарастают, состоит в прекращении образования мышечных волокон, замещении их соединительной тканью и жировой дегенерации. Постепенно характер строения мышцы нарушается. Несмотря па эти существенные изменения цилиарной мышцы, ее сократительная способность благодаря приспособительно-компенсаторным механизмам в значительной мере сохраняется, хотя и ослабевает. Относительная недостаточность цилиарной мышцы усугубляется также тем, что вследствие уменьшения эластичности хрусталика для обеспечения той же степени его кривизны мышце приходится сильнее напрягаться. Не исключена возможность и вторичных атрофических изменений в цилиарной мышце из-за ее недостаточной активности в старческом возрасте. Таким образом, ослабление сократительной способности цилиарной мышцы играет определенную роль в возрастном уменьшении объема аккомодации. Однако основными причинами этого, несомненно, являются уплотнение вещества хрусталика и уменьшение его эластичности. В основе развития пресбиопии лежит процесс уменьшения объема аккомодации, который происходит на протяжении всей жизни. Пресбиопия проявляется только в пожилом возрасте, когда удаление ближайшей точки ясного зрения от глаза уже бывает значительным и эта точка приближается к среднему рабочему расстоянию (приблизительно 33 см). У лиц с эмметропией пресбиопия обычно начинает проявляться в возрасте 40--45 лет. В этот период ближайшая точка ясного зрения отодвигается от глаз примерно па 23--31 см, т. е. приближается к среднему рабочему расстоянию (33 см). Для четкого распознавания объектов на этом расстоянии требуется напряжение аккомодации, приблизительно равное 3,0 дптр. Между тем в 45-летнем возрасте средняя величина объема аккомодации составляет всего 3,2 дптр. Следовательно, необходимо затратить почти весь сохраняющийся в этом возрасте объем аккомодации, что вызывает ее чрезмерное напряжение и быстрое утомление. При гиперметропии пресбиопия наступает раньше, при миопии -- позже. Это связано с тем, что у лиц с гиперметропией ближайшая точка ясного видения находится дальше от глаз и удаление ее за пределы среднего рабочего расстояния с возрастом происходит быстрее, чем у лиц с эмметропией. У лиц с миопией, на-оборот, область аккомодации приближена к глазу, напрягать аккомодацию в процессе работы на близком расстоянии приходится только при близорукости менее 3,0 дптр, поэтому симптомы пресбиопии с большим или меньшим запозданием могут возникнуть лишь при миопии слабой степени. При некорригированной близорукости 3,0 дптр и более пресбиопия не проявляется. Основной симптом некорригированной пресбиопии -- затруднения при рассматривании мелких объектов на близком расстоянии. Распознавание последних несколько облегчается, если их отодвинуть на некоторое расстояние от глаз. Однако при значительном удалении объектов зрительной работы их угловые размеры уменьшаются и распознавание вновь ухудшается. Наступающее при этом утомление цилиарной мышцы, обусловленное ее чрезмерным напряжением, может привести к зрительному утомлению. Все, что вызывает хотя бы кратковременное удаление ближайшей точки ясного зрения от глаз и ухудшает различимость объектов зрительной работы, способствует более раннему проявлению пресбиопии и большей выраженности ее симптомов. В связи с этим при прочих равных условиях пресбиопия возникает раньше у лиц, бытовая или профессиональная деятельность которых связана с рассматриванием мелких объектов. Чем меньше контраст объектов с фоном, тем сильнее действует этот фактор. Затруднения при зрительной работе на близком расстоянии у лиц с пресбиопией возрастают при пониженной освещенности вследствие некоторого удаления от глаз ближайшей точки ясного зрения. По той же причине проявления пресбиопии усиливаются при зрительном утомлении. Отмечено также, что при начинающейся катаракте проявления пресбиопии могут возникать несколько позднее или ослабевают, если пресбиопия уже имеет место. С одной стороны, это объясняют некоторым увеличением объема аккомодации вследствие гидратации вещества хрусталика, что препятствует уменьшению его эластичности, с другой -- некоторым сдвигом клинической рефракции в сторону миопии и приближением дальнейшей точки ясного зрения к глазу. Таким образом, улучшение зрения при пресбиопии может служить ранним признаком начинающейся катаракты.

Снижение эластичности хрусталика лишает его возможности изменять радиусы своей кривизны и тем самым менять преломление света, что необходимо для ясного видения. С возрастом в хрусталике изменяются содержание неорганических веществ и концентрация органических. Причины помутнения хрусталика, наблюдающиеся в старческом возрасте, до сих пор не выяснены. Биохимические исследования показали некоторые изменения в его составе. Так, в составе хрусталика обнаружено увеличение нерастворимых белков, липидов и кальция и, наоборот, уменьшение содержания глютатиона и витамина С. Сниженной оказалась и интенсивность окислительно-восстановительных процессов. По мнению некоторых исследователей, в старости хрусталик высыхает, теряет много воды, становится плотнее. Отдельные исследователи считают, что катаракта является результатом процесса старения хрусталика. Она выявляется по молочной окраске зрачка. Катаракта - медленно прогрессирующий процесс. Есть предположение, что возникновение старческой катаракты связано с понижением в организме аскорбиновой кислоты. Некоторые связывают ее появление с атрофией половых желез, нарушением обмена веществ, в результате чего происходят изменения в проницаемости оболочки хрусталика

Согласно наблюдениям исследователей, точки дальнего и ближнего видения глаза в связи с возрастом изменяются. Точка ближнего видения стремительно падает. Поэтому, чтобы лучше рассмотреть предмет, человеку необходимо его отодвигать дальше от себя. В то же время точка дальнего видения до 55 лет остается почти без изменений, хотя впоследствии она довольно быстро снижается. В результате этих смещений в 60-летнем возрасте точки ближнего и дальнего видения почти совпадают и к этому времени глаза становятся в большинстве случаев дальнозоркими. Однако исследование долгожителей Абхазии показало, что некоторые из них, несмотря на очень почетный возраст, обладали еще аккомодационной способностью.

Влияние возраста отражается и на других функциональных особенностях глаза. Так, выявлено изменение чувствительности глаза к световым и электрическим воздействиям. Особенно падает с возрастом световая чувствительность глаза. Изменяется с возрастом и цветовая его чувствительность. При этом чувствительность глаза к отдельным цветам снижается неравномерно: к одному цвету быстрее, к другому медленнее. Наиболее высокая чувствительность к цветовому зрению наблюдается в возрасте 27-30 лет, затем происходит ее постепенное снижение. Особенно резко падает чувствительность к синему и красному цвету к 80-летнему возрасту.

Возрастные изменения световой чувствительности глаза (по Лазареву)

Одним из показателей функциональной полноценности глаза является его чувствительность к электрическим воздействиям. Для определения чувствительности один электрод слабого тока прикладывается к закрытому глазу, а другой к виску. При замыкании и размыкании тока у испытуемого в глазу будет появляться ощущение белого света "фосфен". Исследования показали, что в начале онтогенеза наблюдается повышение возбудимости глаза к электрическим раздражениям, а в позднем возрасте ее резкое падение.

Предполагают, что такое снижение возбудимости происходит не только за счет изменений в периферическом отделе, но и за счет изменений коркового отдела анализатора, т. е. возбудимость зрительного анализатора зависит от общего состояния тканей мозга.

С возрастом изменяется и глазное дно. Конфигурация соска зрительного нерва теряет свою четкость. Слабо заметны очертания артерий, вен, желтого пятна. Изменяется и окраска глазного дна. Оно становится заметно бледнее, на бледном фоне нередко выделяются желтоватые бляшки, зерна пигмента. Артерии сетчатки часто расширены и имеют неравномерный калибр, в местах артериовенозных перекрестов они могут закрывать собою вены. Некоторые исследователи полагают, что поражение сетчатки, которое наблюдается в старческом возрасте, нужно отнести за счет сосудистых расстройств. Ограничение поля зрения у стариков в свою очередь объясняют поражением периферических частей сетчатки.

Некоторые исследователи считают, что большинство поражений глаза в старческом возрасте не является следствием процесса старения. Прямой зависимости между дряхлостью и выраженностью старческих изменений в органах зрения не наблюдается.

Влияние возраста на цветовую чувствительность глаза (по Смиту)

4. Нарушение зрения: близорукость , косоглазие, дальнозоркость

Близорукость

Близорукость (миопия) -- заболевание, при котором человек плохо различает предметы, расположенные на дальнем расстоянии. При близорукости изображение приходится не на определенную область сетчатки, а расположено в плоскости перед ней. Поэтому оно воспринимается нами как нечеткое. Происходит это чаще всего из-за несоответствия силы оптической системы глаза и его длины. Обычно при близорукости размер глазного яблока увеличен (осевая близорукость), хотя она может возникнуть и как результат чрезмерной силы преломляющего аппарата (рефракционная миопия). Чем больше несоответствие, тем сильнее близорукость разделяют миопию на:

слабую (до 3,0 диоптрий включительно);

среднюю (от 3,25 до 6,0 диоптрий);

высокую (более 6,0 диоптрий). Высокая миопия может достигать весьма значительных величин: 15, 20, и даже 30 диоптрий.

Близорукие люди нуждаются в очках для дали, а многие и для близи, когда миопия превышает 6-8 и более диоптрий. Но очки, увы, не всегда достаточно хорошо корректируют зрение. Обычно близорукость сопровождается увеличением длины глазного яблока, что приводит к растяжению сетчатки. Чем сильнее степень близорукости, тем выше вероятность возникновения проблем, связанных с сетчаткой глаза -- дистрофия, микро разрывы. Например, во время родов сетчатка с дистрофическими изменениями у беременной женщины из-за физического перенапряжения во время потуг чрезмерно растягивается и может произойти ее отслоение, что в крайнем случае может привести к полной потере зрения. Поэтому во время беременности женщинам, особенно имеющим близорукость, рекомендуется посетить офтальмолога и, при необходимости, провести процедуру периферической профилактической лазерной коагуляции (ППЛК) сетчатки . Она направлена на укрепление периферической зоны сетчатки, чтобы предупредить отслоение сетчатки. Анатомическая предрасположенность к близорукости может передаваться по наследству, также близорукость может быть приобретенной. Иногда миопия начинает прогрессировать, и человек постепенно, с увеличением диоптрий, теряет способность самостоятельно ориентироваться в пространстве. Задача любой коррекции близорукости -- ослабить силу преломляющего аппарата глаза так, чтобы изображение попадало на определенную область сетчатки (то есть вернулось к норме). Близорукость корректируется с помощью очков и контактных линз, но возможно и кардинальное решение проблемы.

Основные методы лечения близорукости

Л азерная коррекция зрения -- в результате воздействия на слои роговицы лучом лазера, ей придается форма «естественной линзы» с индивидуальными для каждого пациента параметрами. На сегодняшний день наиболее распространены несколько методик лазерной коррекции зрения: фрк, ласик, ласек, эпи-ласик, супер-ласик, фемтоласик (интра-ласик). В ходе лазерной коррекции происходит воздействие на роговицу. Ее форма изменяется и за счет этого изображение начинает фокусироваться на сетчатке, как и должно быть. Высокий уровень безопасности и современные эксимер-лазерные установки последнего поколения сделали процедуру коррекции простой и доступной.

И мплантация факичных линз используется, если естественная аккомодация еще не утрачена. В ходе лечения природный хрусталик человека остается на месте, а специальную линзу имплантируют в заднюю или переднюю камеру глаза. Чаще всего используются заднее камерные линзы, которые имплантируются за радужкой перед хрусталиком и не требуют дополнительной фиксации.

Дальнозоркость

Дальнозоркость (гиперметропия) -- вид рефракции глаза, при котором изображение предмета фокусируется не на определенной области сетчатки, а в плоскости за ней. Такое состояние зрительной системы приводит к нечеткости изображения, которое воспринимает сетчатка. Человеку становится сложно читать мелкий шрифт, особенно при плохом освещении, и выполнять любую ручную работу. Часто и вдаль люди с дальнозоркостью видят плохо, изображение становится размытым.

Выделяют три степени дальнозоркости:

слабую -- до +1,0 диоптрии. В этом случае человек обычно видит и вдаль, и вблизи, но возможны жалобы на быструю утомляемость, головную боль, головокружение;

среднюю -- до +5,0 диоптрий; зрение вдаль остается хорошим, а вблизи затруднено;

высокую -- свыше +5,0 диоптрий; плохое зрение и вдаль, и вблизи, так как даже далеко расположенных предметов.

Основные способы лечения дальнозоркости

· лазерная коррекция зрения;

· рефракционная замена хрусталика (ленсэктомия);

· имплантация факичных линз.

Практически у всех людей старше 50 лет развивается возрастная дальнозоркость (пресбиопия). При пресбиопии хрусталик глаза постепенно уплотняется, проявляется слабость ресничной мышцы, уменьшаются резервы аккомодационной способности глаза. Все это в результате ведет к ухудшению зрения вблизи. Пресбиопия корректируется с помощью очков для работы на близком расстоянии, контактных линз или заменой утратившего свою эластичность хрусталика на интраокулярную линзу, мультифокальную или аккомодирующую. В последнем случае операция проводится в режиме «одного дня», в течение 15-20 минут, под местной анестезией через самогерметизирующийся микроразрез размером1,6 мм.

Косоглазие.

Косоглазие - постоянное или периодическое отклонение зрительной оси глаза от точки фиксации, что приводит к нарушению бинокулярного зрения. Косоглазие проявляется внешним дефектом - отклонением глаза/глаз к носу или виску, вверх или вниз. Кроме этого у пациента с косоглазием могут отмечаться двоение в глазах, головокружения и головные боли, снижение зрения, амблиопия. Диагностика косоглазия включает офтальмологическое обследование (проверку остроты зрения, биомикроскопию, периметрию, офтальмоскопию, скиаскопию, рефрактометрию, биометрические исследования глаза и др.), неврологическое обследование. Лечение косоглазия проводится с помощью очковой или контактной коррекции, аппаратных процедур, плеоптических, ортоптических и диплоптических методик, хирургической коррекции.

Косоглазие является не только косметическим дефектом: это заболевание приводит к нарушению работы практически всех отделов зрительного анализатора и может сопровождаться рядом зрительных расстройств. При косоглазии отклонение положения одного или обоих глаз от центральной оси приводит к тому, что зрительные оси не перекрещиваются на фиксируемом предмете. В этом случае в зрительных центрах коры головного мозга не происходит слияния раздельно воспринимаемых левым и правым глазом монокулярных изображений в единый зрительный образ, а возникает двойное изображение объекта. Для защиты от двоения ЦНС подавляет сигналы, получаемые от косящего глаза, что с течением времени приводит к амблиопии - функциональному понижению зрения, при котором косящий глаз почти или совсем не задействуется в зрительном процессе. При отсутствии лечения косоглазия развитие амблиопии и снижение зрения происходит примерно у 50 % детей.

Классификация косоглазия

По срокам возникновения различают косоглазие врожденное (инфантильное - имеется с рождения или развивается в первые 6 мес.) иприобретенное (обычно развивается до 3-х лет). По признаку стабильности отклонения глаза выделяют периодическое (преходящее) и постоянное косоглазие. зрительный глаз косоглазие близорукость

С учетом вовлеченности глаз косоглазие может быть односторонним (монолатеральным ) и перемежающимся (альтернирующим ) - в последнем случае попеременно косит то один, то другой глаз.

По степени выраженности различают косоглазие скрытое (гетерофорию), компенсированное (выявляется только при офтальмологическом обследовании), субкомпенсированное (возникает только при ослаблении контроля) и декомпенсированное (не поддается контролю).

В зависимости от того направления, куда отклоняется косящий глаз, выделяют горизонтальное , вертикальное и смешанное косоглазие. Горизонтальное косоглазие может быть сходящимся (эзотропия, конвергирующее косоглазие) - в этом случае косящий глаз отклонен к переносице; и расходящимся (экзотропия, дивергирующее косоглазие) - косящий глаз отклонен к виску. В вертикальном косоглазии также выделяют две формы со смещением глаза кверху (гипертропия, суправергирующее косоглазие) и книзу (гипотропия, инфравергирующее косоглазие). В некоторых случаях встречается циклотропия - торзионная гетеротропия, при которой вертикальный меридиан наклонен в сторону виска (эксциклотропия) или в сторону носа (инциклотропия).

С точки зрения причин возникновения выделяют содружественное и паралитическое несодружественное косоглазие. В 70-80% случаев содружественное косоглазие бывает сходящимся, в 15-20% - расходящимся. Торзионные и вертикальные отклонения, как правило, встречаются при паралитическом косоглазии.

При содружественном косоглазии движения глазных яблок в различных направлениях сохранены в полном объеме, отсутствует диплопия, имеется нарушение бинокулярного зрения. Содружественное косоглазие может быть аккомодационным, частично-аккомодационным, неаккомодационным.

Аккомодационное содружественное косоглазие чаще развивается в возрасте 2,5-3 лет в связи с наличием высоких и средних степеней дальнозоркости, близорукости, астигматизма. В этом случае применение корригирующих очков или контактных линз, а также аппаратного лечения будет способствовать восстановлению симметричного положения глаз.

Признаки частично-аккомодационного и неаккомодационного косоглазия появляются у детей 1-го и 2-го года жизни. При данных формах содружественного косоглазия аномалия рефракции является далеко не единственной причиной гетеротропии, поэтому для восстановления положения глазных яблок требуется проведение хирургического лечения.

Развитие паралитического косоглазия связано с повреждением или параличом глазодвигательных мышц вследствие патологических процессов в самих мышцах, нервах или головном мозге. При паралитическом косоглазии ограничена подвижность отклоненного глаза в сторону пораженной мышцы, возникает диплопия и нарушение бинокулярного зрения.

Лечение косоглазия

При содружественном косоглазии главной целью лечения служит восстановление бинокулярного зрения, при котором устраняется асимметрия положения глаз и нормализуются зрительные функции. Мероприятия могут включать оптическую коррекцию, плеоптико-ортоптическое лечение, хирургическую коррекцию косоглазия, пред- и послеоперационное ортоптодиплоптическое лечение.

В ходе оптической коррекции косоглазия преследуется цель восстановления остроты зрения, а также нормализации соотношения аккомодации и конвергенции. С этой целью производится побор очков или контактных линз. При аккомодационном косоглазии этого бывает достаточно для устранения гетеротропии и восстановления бинокулярного зрения. Между тем, очковая или контактная коррекция аметропии необходима при любой форме косоглазия.

Плеоптическое лечение показано при амблиопии для усиления зрительной нагрузки на косящий глаз. С этой целью может назначаться окклюзия (выключение из процесса зрения) фиксирующего глаза, использоваться пенализация, назначаться аппаратная стимуляция амблиопичного глаза (Амблиокор, Амблиопанорама, программно-компьютерное лечение, тренировка аккомодации,электроокулостимуляция, лазерстимуляция, магнитостимуляция, фотостимуляция, вакуумный офтальмологический массаж). Ортоптический этап лечения косоглазия направлен на восстановление согласованной бинокулярной деятельности обоих глаз. С этой целью используются синоптические аппараты (Синоптофор), компьютерные программы.

На заключительном этапе лечения косоглазия проводится диплоптическое лечение, направленное выработку бинокулярного зрения в естественных условиях (тренировки с линзами Баголини, призмами); назначается гимнастика для улучшения подвижности глаз, тренировки на конвергенцтренере.

Хирургическое лечение косоглазия может предприниматься, если эффект от консервативной терапии отсутствует в течение 1-1,5 лет. Оперативную коррекцию косоглазия оптимально проводить в возрасте 3-5 лет. В офтальмологии хирургическое уменьшение или устранение угла косоглазия часто проводится поэтапно. Для коррекции косоглазия применяются операции двух типов: ослабляющие и усиливающие функцию глазодвигательных мышц. Ослабление мышечной регуляции достигается с помощью пересадки (рецессии) мышцы либо пересечения сухожилия; усиления действия мышцы добиваются путем ее резекции (укорочения).

До и после операции по коррекции косоглазия показано ортоптическое и диплоптическое лечение для ликвидации остаточной девиации. Успешность хирургической коррекции косоглазия составляет 80-90%. Осложнениями хирургического вмешательства могут являться гиперкоррек-ция и недостаточная коррекция косогла-зия; в редких случаях - инфек-ции, кровотечение, потеря зрения.

Критериями излечения косоглазия служат симметричность положения глаз, устойчивость бинокулярного зрения, высокая острота зрения.

Прогноз и профилактика косоглазия

Лечение косоглазия необходимо начинать, как можно раньше, чтобы к началу школьного обучения ребенок был в достаточной степени реабилитирован в отношении зрительных функций. Практически во всех случаях при косоглазии требуется упорное, последовательное и длительное комплексное лечение. Поздно начатая и неадекватная коррекция косоглазия может привести к необратимому снижению зрения.

Наиболее успешно поддается коррекции содружественное аккомодационное косоглазие; при поздно выявленном паралитическом косоглазии прогноз восстановления полноценной зрительной функции неблагоприятный.

Профилактика косоглазия требует регулярных осмотров детей офтальмологом, своевременной оптической коррекции аметропий, соблюдения требований гигиены зрения, дозированности зрительных нагрузок. Необходимо раннее выявление и лечение любых заболеваний глаз, инфекций, профилактика травм черепа. В процессе беременности следует избегать неблагоприятных воздействий на плод.

5. Влияние освещения на развитие нарушения зрения

Самый лучший свет для зрения - разумеется, естественный солнечный. Но и тут есть свои нюансы: так, смотреть на яркое солнце без темных очков не рекомендуется, а долгое пребывание на палящем солнце без защиты глаз может привести к нарушению зрения и способствовать развитию различных заболеваний глаз. Наиболее здоровый вариант - это чуть рассеянный дневной белый свет . Но даже днем далеко не всегда такого света достаточно: во-первых, если вы находитесь в помещении, степень освещенности в течение дня меняется из-за перемещения солнца относительно вашей стороны здания; во-вторых, в зимний период (захватывая позднюю осень и раннюю весну) свет в наших широтах вообще слишком тусклый для полноценного освещения. Поэтому в дневное время естественный свет часто используется лишь как фоновый, который обязательно нужно дополнять местным искусственным освещением. Тут мы приближаемся к главному вопросу: какое искусственное освещение наиболее полезно для зрения?

Лампы накаливания или люминисцентные

Как и следовало ожидать, люди еще не изобрели идеального искусственного освещения. Чаще всего споры о пользе/вреде для зрения касаются выбора между традиционными лампами накаливания и люминисцентными лампами дневного света, - и в этих спорах нет победителей. Все дело в том, что в чем-то лампы накаливания превосходят люминисцентные лампы - и наоборот; обе технологии не дают идеального эффекта. Главное достоинство ламп накаливания состоит в том, что они не мерцают, а значит, не дают нагрузки на глаза. Свет таких ламп распространяется равномерно и плавно, пульсация полностью отсутствует. Недостатком ламп накаливания является низкая экономичность и экологичность, а также желтый оттенок и слабая интенсивность света. Главным достоинством ламп дневного света можно назвать белый свет высокой интенсивности, подходящий для освещения больших помещений, офисов, учебных классов и т.д., главным недостатком - мерцание, пусть и незаметное для невооруженного глаза. Лампы дневного света старого образца мерцали совершенно очевидно - и это было заметно, теперь такой проблемы нет, но мерцание все равно присутствует и теоретически может негативно влиять на ваше зрение, хотя убедительных доказательств этого пока не получено.

Что касается оттенка света , то в последнее время разгорелась настоящая дискуссия о том, какой именно свет более предпочтителен для зрения, - совершенно белый или желтый. Считается, что белый свет более эргономичен, он повторяет оттенок дневного света, поэтому для глаз полезнее. С другой стороны, существует противоположное мнение, которое состоит в том, что в белом дневном свете присутствуют естественный желтый оттенок, который отсутствует в люминисцентных лампах. Поэтому от чересчур белого света глаза устают, а человек чувствует себя некомфортно. Окончательной ясности по этому вопросу пока нет, а специалисты советуют пользоваться светом того оттенка, который комфортен лично для вас. Совершенно определенно вредными для глаз являются лишь холодные оттенки света - особенно синий.

Интенсивность освещения

Слишком тусклое освещение портит зрение и заставляет вас засыпать на ходу, слишком яркое освещение утомляет (распространенный симптом - головная боль из-за перенапряжения глазных мышц). Оптимальный вариант - умеренно-интенсивное освещение, при котором вам все прекрасно видно, но глазам все еще комфортно. Для достижения такого эффекта можно воспользоваться несложным приемом - сочетать общий и местный источник света . Общий свет должен быть рассеянным, ненавязчивым, местный свет должен быть на 2-3 порядка интенсивнее общего. Очень желательно, чтобы местный свет был регулируемым и направленным. При общем свете вы можете общаться, отдыхать, заниматься домашними делами или работой, не напрягающей зрение. Если же ваша деятельность требует вовлечения глаз, зрения, вы можете включить местное освещение, подобрать интенсивность (для чтения - одна, для работы за компьютером - другая и т.д.).

Очень вредны для зрения выразительные световые блики ; именно поэтому специалисты по освещению часто критикуют интерьерную моду на глянцевые поверхности, стекло и зеркала: такие элементы как раз и дают заметные блики. Блики отвлекают внимание, напрягают зрение, мешают фокусироваться на выбранном объекте. Поэтому очень желательно, чтобы поверхности в помещении были светлыми, но матовыми: такие поверхности отражают свет, но не создают бликов.

В целом, наиболее полезным для зрения вариантом является комбинирование различных методов освещения - вплоть до того, чтобы вы иногда давали отдых глазам, освещая комнату, например, свечой или открытым огнем камина. Используйте интенсивный свет только в том случае, если это необходимо для работы или чтения, в остальных случаях предпочитайте рассеянный общий свет естественного желтоватого оттенка. Помните, что лампы изначально расчитаны на применение в светильниках, поэтому очень желательно наличие плафона или абажура как минимум из матового стекла. Освещайте свое жилое и рабочее пространство с умом: в некоторых случаях уместнее всего слабая подсветка, в других требуется четко направленный яркий свет, а иногда достаточно и маломощной лампочки под плотным абажуром.

6. Правила организации занятий, требующих напряжения зрения

Требования к освещению для сохранения зрения

Организация занятий, требующих напряжения зрения.

Чрезмерное напряжение зрения, если оно часто повторяется, способствует развитию близорукости, а нередко и косоглазия. Поэтому необходимо большое внимание уделять организации такой обстановки, которая облегчает функцию органов зрения. Глаза напрягаются при недостаточном освещении, а также при сильной аккомодации. Поэтому надо следить за освещением помещений, в которых занимаются дошкольники.

На занятиях, связанных с длительным напряжением глазных мышц (рисование, лепка, вышивание), время от времени надо отвлекать детей от работы каким-либо замечанием или показом наглядных пособий, чтобы переключить зрение с близкого расстояния на далекое и дать отдых ресничной мышце.

Особое внимание надо обращать на правильную с гигиенической точки зрения организацию просмотра диапозитивных фильмов и телевизионных передач. Количество кадров в диапозитивном фильме не должно превышать для младших групп детского сада 25--30, средних 35--40 и старших 45--50. Детям 3--5 лет рекомендуется смотреть не более одного фильма (15--20 минут), а старшим (6--7 лет) -- два фильма, если общая их продолжительность не превышает 20--25 минут.

Экран располагают на уровне глаз дошкольников, сидящих на стуле. Так как яркость освещения экрана зависит от срока службы лампы в фильмоскопе, то надо следить, чтобы этот срок не превышал 20-- 25 часов, т. е. 40--60 сеансов. Расстояние первого ряда стульев от экрана надо делать равным двойной ширине экрана Между рядами стульев должно быть не менее 50 см, а последний ряд стульев располагают не далее 4 л» от экрана.

Смотреть телевизионные передачи следует не чаще двух раз в неделю. Телевизор надо установить на столике высотой 1--1,2 м над полом и по испытательной таблице получить хорошее качество изображения. Первый ряд стульев должен быть не ближе 2, а последний не дальше 5 м от экрана; в промежутке устанавливаются еще 5 рядов по 4--5 стульев. Продолжительность телевизионной передачи для детей 3--4 лет должна быть не более 10--15, а для детей 5--7 лет -- не более 25--30 минут.

Освещение. При хорошем освещении все функции организма протекают более интенсивно, улучшается настроение, повышается активность, работоспособность ребенка. Наилучшим считается естественное дневное освещение. Для большей освещенности окна игровых и групповых комнат обычно смотрят на/юг, юго-восток или юго-запад. Свет не должны заслонять ни противоположные здания, ни высокие деревья.

Чем больше площадь застекленной поверхности окон, тем светлее в комнате. Минимально допустимой нормой считается такая площадь, при которой в ясный день на самом отдаленном от окна месте освещенность равна 100 люксам.

Отсюда следует, что, чем больше площадь помещения, тем больше должна быть световая поверхность окон. Отношение площади остекленной поверхности окон к площади пола называется световым коэффициентом. Для игровых и групповых помещений в городах принята норма светового коэффициента, равная 1:4-- 1:5; в сельской местности, где здания, как правило, строят на открытых со всех сторон площадках, световой коэффициент допускается равным 1:5--1:6. Световой коэффициент для остальных помещений должен быть не менее 1: 8.

Чем дальше место от окна, тем хуже его освещенность естественным светом. Для достаточной освещенности глубина помещения не должна превышать двойное расстояние от пола до верхнего края окна. Если глубина помещения равна 6 м, то верхний край окна должен быть на расстоянии 3 м от пола.

Ни цветы, которые могут поглощать до 30% света, ни посторонние предметы, ни шторы не должны мешать прохождению света в помещение, где находятся дети. В игровых и групповых комнатах допустимы только узкие занавески из светлой, хорошо стирающейся ткани, которые располагаются на кольцах по краям окон и применяются в тех случаях, когда необходимо ограничить прохождение в помещение прямых солнечных лучей. Матовые и замазанные мелом оконные стекла в детских учреждениях не допускаются. Необходимо заботиться, чтобы стекла были гладкие, высокого качества.

Для лучшего освещения детских помещений стены и мебель окрашивают в светлые тона, отражающие наибольшее количество света. Нижнюю часть стен (1,5-- J,8 м от пола), подвергающуюся большому загрязнению, окрашивают светлыми масляными красками, устойчивыми к влиянию горячей воды, мыла и дезинфицирующих растворов. Остальную часть стен покрывают клеевой краской, а потолки помещений белят.

Для искусственного освещения обычно пользуются электричеством. Достаточное освещение групповых комнат площадью в 62 кв. м дают 8 ламп мощностью 300 ватт каждая, подвешенных в два ряда (по 4 лампы в ряду) на уровне 2,8--3 м от пола. В спальнях площадью в 70 кв. м надо иметь 8 ламп по 150 ватт каждая. Кроме " того, в спальнях и примыкающих к ним коридорах необходимо дополнительное ночное освещение с помощью ламп синего цвета. Лампы должны быть помещены в арматуру, смягчающую их яркость и дающую рассеянный свет.. Установлено, что -прямой, не огражденный арматурой свет снижает работоспособность, сильно слепит глаза, вызывает резкие тени. Так, при прямом освещении тень от туловища понижает освещенность рабочего места на 50%, а от руки даже на 80%.

Значительное преимущество перед обычным электрическим освещением имеет освещение так называемым «дневным светом» -- люминесцентными источниками света. Люминесцентные лампы дают высокую световую отдачу, позволяющую значительно увеличить норму освещенности. Их спектр в своей видимой части близок к спектру естественного света; кроме того, они дают рассеянный свет, не создающий резких теней. Потребление электроэнергии при люминесцентном освещении почти в три раза меньше, чем при электрическом той же интенсивности.

Естественное и искусственное освещение не достигает цели, если отсутствует надлежащий уход за источниками света и помещениями, в которых они находятся. Так, например, замерзшее стекло поглощает до 80% световых лучей, грязь может снижать прохождение света на 25% и больше. Значительно снижается мощность электрических ламп, по мере их эксплуатации. Поэтому необходим систематический уход как за стеклами окон и арматурой, так и за, самим помещением, его стенами и потолком. Надо следить также за своевременной сменой устаревших ламп.

Литература

1. А.П. Кабанов, А.П. Чабовская. Анатомия, физиология и гигиена детей дошкольного возраста.

2. Н.Н. Леонтьева, К.В. Маринова. Анатомия и физиология детского организма.Ч.1,2.М., «Просвещение», 2000

...

Подобные документы

    Рефракция глаза как процесс преломления световых лучей в оптической системе органа зрения. Ее виды (физическая и клиническая) и способы обозначения. Методы определения степени близорукости и дальнозоркости. Коррекция миопии, гиперметропии и астигматизма.

    реферат , добавлен 05.04.2015

    Физиология и строение глаза. Структура сетчатки глаза. Схема фоторецепции при поглощении глазами света. Зрительные функции(филогенез). Световая чувствительность глаза. Дневное, сумеречное и ночное зрение. Виды адаптации, динамика остроты зрения.

    презентация , добавлен 25.05.2015

    Особенности устройства зрения у человека. Свойства и функции анализаторов. Строение зрительного анализатора. Строение и функции глаза. Развитие зрительного анализатора в онтогенезе. Нарушения зрения: близорукость и дальнозоркость, косоглазие, дальтонизм.

    презентация , добавлен 15.02.2012

    Структура зрительной сенсорной системы: сетчатка; зрительные нервы, тракты; перекрест; лучистость; верхнее двухолмие, латеральные коленчатые тела, таламус; зрительная зона коры. Орган зрения. Теории цветового зрения. Коррекция аномалий рефракции глаза.

    реферат , добавлен 18.06.2014

    Принцип строения зрительного анализатора. Центры головного мозга, анализирующие восприятие. Молекулярные механизмы зрения. Са и зрительный каскад. Некоторые нарушения зрения. Близорукость. Дальнозоркость. Астигматизм. Косоглазие. Дальтонизм.

    реферат , добавлен 17.05.2004

    Методика занятий при миопии. Укрепление мышечной системы глаза. Симптомы дальнозоркости и близорукости. Нарушение формы хрусталика или роговицы. Комплекс упражнений для улучшения зрения. Гимнастика для усталых глаз. Упражнения для мышц шеи и спины.

    реферат , добавлен 04.12.2010

    Строение глаза, методики сохранения зрения. Влияние работы на компьютере на глаза. Специальные процедуры для улучшения зрения. Комплекс упражнений из йоги. Показания к применению ЛФК при миопии. Физкультура при слабой и высокой степени близорукости.

    реферат , добавлен 08.03.2011

    Строение органа зрения. Вспомогательные органы, сосуды и нервы глаза. Показатели остроты зрения, ее определение с использованием таблицы Головина-Сивцева. Исследование состояния зрительного анализатора школьников. Факторы, влияющие на ухудшение зрения.

    курсовая работа , добавлен 25.01.2013

    Снижение зрения, затуманивание, периодическое покалывание в глазу. Определение остроты зрения. Разность утреннего и вечернего давления. Обширная глаукомная экскавация. Сдвиг сосудистого пучка. Сужение полей зрения. Начальное помутнение хрусталика.

    история болезни , добавлен 06.07.2011

    Ознакомление с основными причинами нарушения зрения; описание группы риска. Изучение проявлений оптической нейропатии, внутричерепной гипертензии, амблиопии, амавроза и других заболеваний глаза. Рассмотрение глобальных мер по предупреждению слепоты.

Зрительный анализатор: строение, возрастные особенности : Важную роль в познавательной деятельности человека играет зрительный анализатор. Больше 90% информации, которая поступает в мозг, дает зрительный анализатор. С деятельностью зрительного анализатора связано определение формы предметов, их величины, расстояния предметов, от глаза, их подвижности, цвете.

Строение зрительного анализатора

  • -- глаз: фоторецепторы в сетчатке;
  • -- зрительный нерв: вторая пара черепно-мозговых нервов (чувствительные нервы);
  • -- зрительная зона коры полушарий головного мозга: затылочная зона.

Орган зрения (глаз) расположен в глазнице черепа. Глаз состоит из: --глазного яблока; -- дополнительных органов глаза (глазных мышц, век, слезного аппарата).

Строение глазного яблока : -- внешняя толстая, плотная оболочка . Ее передний отдел занимает 1/5 поверхности глазного яблока, образованный прозрачной, выпуклой спереди роговицей, которая не имеет кровеносных сосудов и владеет высокими преломляющими свойствами. Задний отдел внешней оболочки -- склера (белковая оболочка) образованная плотной волокнистой соединительной тканью;

-- средняя сосудистая оболочка включает собственно сосудистую оболочку, ресничное тело, радужную оболочку. Собственно сосудистая оболочка тонкая, содержит кровеносные сосуды. В центре радужной оболочки, находится отверстие -- зрачок, через которое лучи, света попадают на внутреннюю оболочку. В соединительно-тканевой основе радужной оболочки содержатся сосуды, гладкие мускульные волокна и пигментные клетки.

В зависимости от количества и глубины залегания пигмента цвет радужки разный. Цветом радужки определяется цвет глаз. Пучки гладких и блестящих мускульных волокон образуют мышцу, которая суживает или расширяет зрачок. Величина зрачка изменяется, потому в глаз может проникнуть большее или более малое количество света. Ресничное тело расположено впереди собственно сосудистой оболочки, большая его часть состоит из ресничной мышцы;

  • -- за зрачком расположен хрусталик (двояковыпуклая линза) -- прозрачное тело, которое находится в тонкостенной капсуле и соединяется ресничными волокнами с ресничным телом и ресничной мышцей. При сокращении ресничной мышцы изменяется натяжение ресничных волокон, регулируется кривизна хрусталика, изменяется его преломляющая сила;
  • -- между роговицей и радужкой, между радужкой и хрусталиком находятся небольшие полости -- передняя и задняя камеры глаза , в которых содержится водянистая жидкость. Она обеспечивает питательными веществами роговицу и хрусталик, которые не имеют кровеносных сосудов. Полость глаза сзади хрусталика заполнена прозрачным веществом -- стекловидным телом,
  • - внутренняя оболочка (сетчатка ). Она построена из двух листков: внешнего пигментного и внутреннего светочувствительного. Внешний листок состоит из слоя пигментных клеток, которые содержат черный пигмент, -- фуксин , что поглощает свет и препятствует отражению и рассеиванию изображения. Это обеспечивает четкое зрительное восприятие.

Внутренний листок сетчатки состоит из 3 отделов клеток : 1. внешнего , который прилегает к пигментному слою, -- фоторецепторный; 2. средний -- ассоциативный; 3. внутренний -- ганглиозный.

Фоторецепторный слой сетчатки состоит из нейросенсорных клеток -- палочек и колбочек. Во внешних сегментах палочек содержится фотопигмент, зрительный пурпур, а в колбочках -- йодопсин. Палочкоподобные клетки реагируют на световые лучи всего спектра (от 400 до 800нм), а колбочки -- лишь на определенную длину волны: одни чувствительные до 430нм (синие колбочки), другие до 535нм (зеленые), третьи -- до575нм (красные).

Именно модальность трех типов этих клеток, которые воспринимают синие, зеленые, красные цвета предопределяет цветное зрение.

В сетчатке глаза приблизительно 7млн. колбочек и 130 млн. палочек. Чувствительность палочкоподобных клеток в 1000 раз больше, чем колбочек. Они возбуждаются даже при плохом освещении -- ночью и в сумерках. Палочки воспринимают информацию о форме и освещенности предметов, а колбочки -- о цвете.

Превращение энергии света в нервный импульс происходит в результате химических реакций, которые происходят в палочках и колбочках. Родопсин и йодопсин распадаются на более простые химические вещества, которые влекут возникновение в светочувствительных клетках потенциала действия, -- нервного импульса. При прекращении действия света эти зрительные пигменты возобновляются.

Центральные отростки (аксоны) палочек и колбочек передают зрительные импульсы биполярным клеткам ассоциативного слоя сетчатки, которые контактируют с ганглиозными клетками внутреннего слоя. Ганглиозный слой образован большими нейроцитами, аксоны которых образуют зрительный нерв.

В месте выхода зрительного нерва из глазного яблока, на сетчатке отсутствуют светочувствительные клетки -- слепое пятно. В центральной части сетчатки расположено больше всего светочувствительных клеток -- желтое пятно (место наилучшего виденья).

Световые лучи, которые поступают в глаз, прежде, чем они попадают на сетчатку, проходят через несколько преломляющих сред, которые образуют оптическую систему глаза.

Оптическая система глаза : 1. роговица; 2. водянистая жидкость передней и задней камер; 3. хрусталик; 4. стекловидное тело.

Их общая преломляющая сила глаза составляет 60--70 диоптрий (1 диоптрия -- это преломляющая сила линзы с фокусным расстоянием 1м). Изображение на сетчатке глаза выходит уменьшенным и обратным. Мы видим предметы не в перевернутом, а в их естественном виде благодаря жизненному опыту и взаимодействию анализаторов.

Глаз владеет способностью приспосабливаться к четкому виденью предметов , которые расположены от него на разном расстоянии, -- аккомодацией . Аккомодация осуществляется путем изменения кривизны хрусталика. При рассматривании близких предметов ресничная мышца сокращается, и хрусталик благодаря своей эластичности становится более выпуклым, увеличивается его преломляющая сила и изображение фокусируется на сетчатке. При рассматривании предметов на далеком расстоянии, напряжение ресничной мышцы уменьшается, ресничное тело натягивается, и капсула хрусталика предопределяет сдавливание хрусталика, его преломляющая сила уменьшается.

Глазное яблоко преломляет параллельные лучи света, фокусирует их на сетчатке. Сокращение ресничной мышцы начинается тогда, когда предмет приближается на расстояние 65 см, а максимум бывает при его размещении на расстоянии 7--14 см от глаза. Наименьшее расстояние, при котором предмет воспринимается глазом четко, называется ближайшей точкой ясного виденья. С возрастом эластичность хрусталика уменьшается и эта точка отдаляется. В 10 лет ближайшая точка ясного виденья находится на расстоянии меньше 7см, в 20 лет -- 8,3см, в 40 лет -- 17см, в 50 лет -- 50см. На близком расстоянии человек перестает различать мелкие предметы. Это явление носит название дальнозоркости. Дальнозоркий глаз имеет относительно слабую преломляющую способность. В таком глазе изображение отдаленных предметов возникает за сетчаткой. Для коррекции нарушения зрения используют очки с двояковыпуклой линзой, которая увеличивает преломление лучей. В близоруком глазе изображение отдаленных предметов возникает перед сетчаткой. Это может быть предопределено удлинением оси глаза или перенапряжением ресничной мышцы. Близорукий глаз хорошо видит только расположенные, близко предметы. Для коррекции нарушения зрения назначают очки с рассеянными двояковогнутыми линзами.

Правый и левый зрительные нервы, которые отходят от глазного яблока на нижней поверхности мозга образуют частичное перекрещивание, что обеспечивает бинокулярное зрения. Работая вместе, объединяя зрительную информацию, оба глаза обеспечивают стереоскопичное зрение, которое позволяет получить более точное представление о форме, объеме, глубине расположения предметов. От зрительного перекрещивания волокна идут к подкорковым центрам зрения (верхние горбы покрышки среднего мозга). В этих центрах от волокон ганглиозных клеток сетчатки импульс передается нейронам, чьи отростки идут к корковому центру зрения -- в кору затылочной части, где происходит высший анализ зрительной информации.

Возрастные особенности : Развитие зрительного анализатора начинается на третьей неделе эмбрионального развития и к моменту рождения ребенка зрительный анализатор в основном морфологически сформирован. Однако совершенствование его структуры происходит и после рождения, и завершается в школьные годы. У новорожденных детей форма глаза более шаровидная, диаметр глазного яблока составляет 16мм. Интенсивнее всего глазное яблоко растет до 5 лет, менее интенсивно до 12 лет. Диаметр у взрослых людей составляет 24мм. У детей склера более тонка и более эластична, роговица относительно толстая. Это способствует легкой деформации глаза. У новорожденных детей и детей дошкольного возраста хрусталик более выпуклой формы и более эластичный, реснитчатое тело слабо развитое.

У новорожденных глаза, как правило, дальнозоркие. Однако у части детей шаровидная форма глаз может стать продленной. Изображения предметов перестают совпадать с сетчаткой, глаза становятся близорукие. Иногда встречается у новорожденных неодинаковая кривизна роговицы или хрусталика в разных меридианах, в результате чего изображение на сетчатке искажается (невозможность восхождения всех лучей в одной точке -- фокусе) -- астигматизм. Встречается нарушение прозрачности хрусталика -- катаракта.

Возрастные особенности зрительной сенсорной системы : После рождения органы зрения человека претерпевают значительные морфофункциональные изменения. Например, длина глазного яблока у новорожденного составляет 16 мм, а его масса - 3,0 г, к 20 годам эти цифры увеличиваются до 23 мм и 8,0 г.

В процессе развития меняется и цвет глаз. У новорожденных в первые годы жизни радужка содержит мало пигментов и имеет голубовато-сероватый оттенок. Окончательная окраска радужки формируется только к 10-12 годам.

Развитие зрительной сенсорной системы также идет от периферии к центру. Миелинизация зрительных нервных путей заканчивается к 3-4 месяцам жизни. Причем развитие сенсорных и моторных функций зрения идет синхронно. В первые дни после рождения движения глаз независимы друг от друга, и соответственно механизмы координации и способность фиксировать взглядом предмет, несовершенны и формируются в возрасте от 5 дней до 3-5 месяцев.

Функциональное созревание зрительных зон коры головного мозга по некоторым данным происходит уже к рождению ребенка, по другим - несколько позже.

Оптическая система глаза в процессе онтогенетического развития также изменяется. Ребенок в первые месяцы после рождения путает вверх и низ предмета. То обстоятельство, что мы видим предметы не в их перевернутом изображении, а в их естественном виде объясняется жизненным опытом и взаимодействием сенсорных систем.

Аккомодация у детей выражена в большей степени, чем у взрослых. Эластичность хрусталика с возрастом уменьшается, и соответственно падает аккомодация. Вследствие этого у детей встречаются некоторые нарушения аккомодации.

Так, у дошкольников вследствие более плоской формы хрусталика очень часто встречается дальнозоркость. В 3 года дальнозоркость наблюдается у 82% детей, а близорукость - у 2,5%. С возрастом это соотношение изменяется и число близоруких значительно увеличивается, достигая к 14-16 годам 11%. Важным фактором, способствующим появлению близорукости, является нарушение гигиены зрения: чтение лежа, выполнение уроков в плохо освещенной комнате, увеличение напряжения на глаза и многое др.

В процессе развития существенно меняются цветоощущения ребенка. У новорожденного в сетчатке функционируют только палочки, колбочки еще незрелые и их количество невелико. Элементарные функции цветоощущения у новорожденных, видимо, есть, но полноценное включение колбочек в работу происходит только к концу 3-го года. Однако и на этой возрастной ступени оно еще неполноценно.

Своего максимального развития ощущение цвета достигает к 30 годам и затем постепенно снижается. Большое значение для формирования цветоощущения имеет тренировка. Интересно то, что быстрее всего ребенок начинает узнавать желтые и зеленые цвета, а позднее - синий. Узнавание формы предмета появляется раньше, чем узнавание цвета. При знакомстве с предметом у дошкольников первую реакцию вызывает его форма, затем размеры и в последнюю очередь цвет.

С возрастом повышается острота зрения и улучшается стереоскопия. Наиболее интенсивно стереоскопическое зрение изменяется до 9-10 лет и достигает к 17-22 годам своего оптимального уровня. С 6 лет у девочек острота стереоскопического зрения выше, чем у мальчиков. Глазомер у девочек и мальчиков 7-8 лет значительно лучше, чем у дошкольников, и не имеет половых различий, но приблизительно в 7 раз хуже, чем у взрослых. В последующие годы развития у мальчиков линейный глазомер становится лучше, чем у девочек.

Поле зрения особенно интенсивно развивается в дошкольном возрасте, и к 7 годам оно составляет приблизительно 80% от размеров поля зрения взрослого. В развитии поля зрения наблюдаются половые особенности. В 6 лет поле зрения у мальчиков больше, чем у девочек, в 7-8 лет наблюдается обратное соотношение. В последующие годы размеры поля зрения одинаковы, а с 13-14 лет его размеры у девочек больше. Указанные возрастные и половые особенности развития поля зрения должны учитываться при организации индивидуального обучения детей, т. к. поле зрения (пропускная способность зрительного анализатора и, следовательно, учебные возможности) определяет объем информации, воспринимаемой ребенком.

В процессе онтогенеза пропускная способность зрительной сенсорной системы также изменяется. До 12-13 лет существенных различий между мальчиками и девочками не наблюдается, а с 12-13 лет у девочек пропускная способность зрительного анализатора становится выше, и это различие сохраняется в последующие годы. Интересно, что уже к 10-11 годам этот показатель приближается к уровню взрослого человека, который в норме составляет 2-4 бит/с.

Зрительная система у людей одним из важнейших органов чувств. Именно она придает мозга более 90% всей сенсорной информации.

Зрительная система воспринимает видимый свет - узкую часть диапазона электромагнитных излучений с различными длинами волн, от сравнительно коротких (красный) до более длинных (синий). Человек видит различные объекты том, что они отражают свет. А цвета, различаются ней, определяются тем, какую из частей видимого светового спектра отражает или поглощает предмет.

Общая последовательность зрительного восприятия такова: оно начинается с проекции изображения на сетчатку глаза; дальше происходит возбуждение фоторецепторов; еще дальше - передачи и преобразования зрительной информации в нейронных сетях зрительной системы; а заканчивается зрительное восприятие принятием высшими корковыми отделами зрительной системы решения о зрительный образ.

Основными структурными компонентами системы зрения являются:

1) периферический отдел - это глаз с его основными аппаратами (оптическим, движения глаз и сетчатки)

2) зрительные нервы, передающие информацию от сетчатки ядрам таламуса и гипоталамуса;

3) подкорковый отдел - три пары ядер-латеральных коленчатых тел, верхние бугорки чотирьохгорбчатого тела (в таламусе) и супрахиазмени ядра гипоталамуса;

4) зрительная кора.

Конечно кривизна, показатель преломления роговице и хрусталика (в меньшей степени) определяют преломление световых лучей внутри глаза. На сетчатке образуется изображение, резко уменьшено и перевернутое вверх ногами и вправо-влево.

Глазное яблоко человека имеет близкую к шарообразной форме, что делает его вращения для наведения на объект, рассматриваемый и обеспечивает хорошее фокусировки изображения на сетчатке. На пути к сетчатке лучи света проходят через прозрачные роговицу, хрусталик и стекловидное тело (см. Рис. 3.1.) Радужная оболочка, определяет цвет глаз, представляет собой круговую мышцу, что изменяет количество света, которое попадает в глаз, расширяя или сужая отверстие в своем центре - зрачок.

Рис. 3.1. Строение глазного яблока

1 - мышца; 2 - стекловидное тело; 3 - белковая оболочка; 4 - сосудистая оболочка; 5 - пигментный слой; 6 - сетчатка; 7 - желтое пятно; 8 - слепое пятно; 9 - зрительный нерв; 10 - радужная оболочка; 11 - хрусталик; 12 - передняя камера; 13 - роговица; 14 - связи хрусталика

Хрусталик располагается непосредственно за зрачком. Он может изменять свою кривизну благодаря специальным мышцам в зависимости от расстояния между человеком и объектом наблюдается. Это приспособление глаза к ясному видению объектов, расположенных на разном расстоянии, называется аккомодацией.

Световые лучи от предметов проходят через зрачок, хрусталик и стекловидное тело. У людей с нормальным зрением лучи попадают точно на сетчатку, образуя на ней четкие изображения предметов. Две главные аномалии рефракции глаза - близорукость и дальнозоркость обусловленные изменением длины глазного яблока. Близорукость обусловлена слишком длинной продольной осью глаза - лучи от далекого объекта сфокусируются не в сетчатке, а перед ней, в стекловидном теле. Дальнозоркость - укороченной продольной осью лучи фокусируются за сетчаткой (рис. 3.2.).

Рис. 32. Главные аномалии рефракции глаза.

Сетчатка является внутренней светочувствительной оболочке глаза. Она имеет толщину 0,15-0,20 мм и состоит из нескольких слоев нервных клеток. Первый слой сетчатки образован зрительными рецепторами - палочками и колбочками. Именно в них происходит трансформация световой энергии в нервное возбуждение. Это осуществляется с помощью зрительных пигментов, содержащихся в палочках (родопсин) и колбочках (йодопсин).

В сетчатке содержится примерно 6-7 млн. Колбочек и 110-125 млн. Палочек. Палочки чувствительны к яркости света, но не могут воспринимать цвет. Колбочки реагируют на различные цвета, но менее чувствительны к яркости света. Они распределены в сетчатке неравномерно. В центральной ямке сетчатки (желтом пятне) - месте наиболее четкой фокусировки изображения содержатся только колбочки. По направлению к периферии сетчатки количество колбочек уменьшается до полного исчезновения, а количество палочек увеличивается.

Зрительная информация с сетчатки в мозг передается через волокна зрительного нерва. Нервы от глаз встречаются в основании мозга, где часть волокон переходит на противоположную сторону (зрительный перекреста хиазма). Этот механизм обеспечивает каждое полушарие мозга информации от обоих глаз: в затылочную долю правого полушария поступают сигналы от правых половин каждой сетчатки, а в левое полушарие - от левой половины каждой сетчатки. После перекреста основное количество нервных волокон подходит к подкоркового зрительного центра, а дальше зрительные сигналы поступают в первичную проекционную область зрительной коры. Зрительная кора имеет слоистую структуру и делится на шесть слоев. Значительная часть ее нейронов отвечает только на определенные стимулы.

Одной из наиболее важных характеристик зрения является его острота - максимальная способность различать отдельные детали объектов. Она определяется по наименьшей расстоянием между двумя точками, различаются. В норме глаз различает две точки, расстояние между которыми составляет одну угловую минуту. Максимальную остроту зрения имеет центральная ямка. К периферии от нее острота зрения гораздо меньше.

Важным приспособлением зрительной системы к освещенности является ее адаптация. Световая адаптация возникает при переходе от темноты к свету (после временного ослепления чувствительность зрения к свету постепенно снижается). Темповая - при переходе от света к темноте чувствительность к свету повышается.

При фиксации взглядом небольшого предмета его изображение проецируется в центральной ямке сетчатки. В этом случае видение предмета осуществляется с помощью центрального зрения. Восприятие предметов другими участками сетчатки называется периферийным зрением. Поля зрения называется пространство, видимое глазом при фиксации взгляда в одной точке. Его угловой размер составляет у человека 1,5-2 угловых градуса.

Видение двумя глазами одновременно называется бинокулярным зрением. Несмотря на наличие двух изображений на двух сетчатки глаза, у человека не возникает ощущения видение двух предметов. Это происходит вследствие того, что изображение каждой точки предмета попадает на соответствующие - корреспондирующие точки двух сетчаток. Но если же смотреть на близкий предмет, то изображение какой-нибудь более удаленной точки попадает на идентичны - диспаратни точки двух сетчаток. Этот механизм играет значительную роль в оценке расстояния, в видении глубины пространства и оценке величины предметов.

При рассмотрении любых предметов глаза делают постоянные движения, обеспечиваются шестью мышцами, прикрепленными к глазному яблоку. Движение обоих глаз происходит согласованно. При рассмотрении близких предметов глаза сводятся - конвергенция, а при рассматривании далеких - разводятся (дивергенция).



Похожие публикации