Сосудистое сопротивление. Сопротивление сосудов Препаратом повышающим общее периферическое сопротивление сосудов является

8)классификация кровеносных сосудов.

Кровено́сные сосу́ды - эластичные трубчатые образования в теле животных и человека, по которым силой ритмически сокращающегося сердца или пульсирующего сосуда осуществляется перемещение крови по организму: к органам и тканям по артериям, артериолам, артериальным капиллярам, и от них к сердцу - по венозным капиллярам, венулам и венам.

Среди сосудов кровеносной системы различают артерии , артериолы , капилляры , венулы , вены и артериоло-венозные анастомозы ; сосуды системы микроциркуляторного русла осуществляют взаимосвязь между артериями и венами. Сосуды разных типов отличаются не только по своей толщине, но и по тканевому составу и функциональным особенностям.

    Артерии - сосуды, по которым кровь движется от сердца. Артерии имеют толстые стенки, в которых содержатся мышечные волокна, а также коллагеновые и эластические волокна. Они очень эластичные и могут сужаться или расширяться, в зависимости от количества перекачиваемой сердцем крови.

    Артериолы - мелкие артерии, по току крови непосредственно предшествующие капиллярам. В их сосудистой стенке преобладают гладкие мышечные волокна, благодаря которым артериолы могут менять величину своего просвета и, таким образом, сопротивление.

    Капилляры - это мельчайшие кровеносные сосуды, настолько тонкие, что вещества могут свободно проникать через их стенку. Через стенку капилляров осуществляется отдача питательных веществ икислорода из крови в клетки и переход углекислого газа и других продуктов жизнедеятельности из клеток в кровь.

    Венулы - мелкие кровеносные сосуды, обеспечивающие в большом круге отток обедненной кислородом и насыщенной продуктами жизнедеятельности крови из капилляров в вены.

    Вены - это сосуды, по которым кровь движется к сердцу. Стенки вен менее толстые, чем стенки артерий и содержат соответственно меньше мышечных волокон и эластических элементов.

9)Объемная скорость кровотока

Объемная скорость потока крови (кровотока) сердца - это динамический показатель деятельности сердца. Соответствующая этому показателю переменная физическая величина характеризует объёмное количество крови, проходящее через поперечное сечение потока (в сердце) за единицу времени. Объемную скорость кровотока сердца оценивают по формуле:

CO = HR · SV / 1000,

где: HR - частота сокращений сердца (1 / мин ), SV - систолический объём кровотока (мл , л ). Система кровообращения, или сердечно-сосудистая система представляет собой замкнутую систему (см. схему 1, схему 2, схему 3). Она состоит из двух насосов (правое сердце и левое сердце), соединенных между собой последовательнокровеносными сосудами большого круга кровообращения и кровеносными сосудами малого круга кровообращения(сосудами лёгких). В любом совокупном сечении этой системы протекает одно и то же количество крови. В частности, при одних и тех же условиях поток крови, протекающий через правое сердце, равен потоку крови, протекающей через левое сердце. У человека в состоянии покоя объёмная скорость кровотока (как правого, так и левого) сердца составляет ~4,5 ÷ 5,0 л / мин . Целью системы кровообращения является обеспечение непрерывного кровотока во всех органах и тканях в соответствии с потребностями организма. Сердце является насосом, перекачивающим кровь по системе кровообращения. Вместе с кровеносными сосудами сердце актуализирует цель системы кровообращения. Отсюда, объёмная скорость кровотока сердца является переменной, характеризующей эффективность работы сердца. Кровоток сердца управляется сердечно-сосудистым центром и зависит от ряда переменных. Главными из них являются:объёмная скорость потока венозной крови к сердцу (л / мин ), конечно-диастолический объём кровотока (мл ), систолический объём кровотока (мл ), конечно-систолический объём кровотока (мл ), частота сокращений сердца (1 / мин ).

10) Линейная скорость потока крови (кровотока) - это физическая величина, являющаяся мерой движения частиц крови, составляющих поток. Теоретически она равна расстоянию, проходимому частицей вещества, составляющего поток, в единицувремени: v = L / t . Здесь L - путь (м ), t - время (c ). Кроме линейной скорости кровотока различают объёмную скорость потока крови, или объёмную скорость кровотока . Средняя линейная скорость ламинарного кровотока (v ) оценивается интегрированием линейных скоростей всех цилиндрических слоев потока:

v = (dP · r 4 ) / (8η · l ),

где: dP - разница давления крови в начале и в конце участка кровеносного сосуда, r - радиус сосуда, η - вязкость крови, l - длина участка сосуда, коэффициент 8 - это результат интегрирования скоростей, движущихся в сосуде слоев крови. Объемная скорости кровотока (Q ) и линейная скорости кровотока связаныотношением:

Q = v · π · r 2 .

Подставив в это отношение выражение для v получим уравнение («закон») Хагена-Пуазейля для объёмной скорости кровтотка:

Q = dP · (π · r 4 / 8η · l ) (1).

Исходя из простой логики, можно утверждать, что объёмная скорость любого потока прямо пропорциональна движущейсиле и обратно пропорциональна сопротивлению потоку. Аналогично, объёмная скорость кровотока (Q ) прямо пропорциональна движущей силе (градиентдавления, dP ), обеспечивающей кровоток, и обратно пропорциональна сопротивлению кровотоку (R ): Q = dP / R . Отсюда R = dP / Q . Подставляя в это отношение выражение (1) для Q , получим формулу для оценки сопротивления кровотоку:

R = (8η · l ) / (π · r 4 ).

Из всех этих формул видно, что самой значимой переменной, определяющей линейную и объёмную скорости кровотока, является просвет (радиус) сосуда. Эта переменная является главной переменной в управлении кровотоком.

Сопротивление сосудов

Гидродинамическое сопротивление прямо пропорционально длине сосуда и вязкости крови и обратно пропорционально радиусу сосуда в 4-й степени, то есть больше всего зависит от просвета сосуда. Так как наибольшим сопротивлением обладают артериолы, ОПСС зависит главным образом от их тонуса.

Различают центральные механизмы регуляции тонуса артериол и местные механизмы регуляции тонуса артериол.

К первым относятся нервные и гормональные влияния, ко вторым - миогенная, метаболическаяи эндотелиальная регуляция.

На артериолы оказывают постоянный тонический сосудосуживающий эффект симпатические нервы. Величина этого симпатического тонуса зависит от импульсации, поступающей отбарорецепторов каротидного синуса, дуги аорты и легочных артерий.

Основные гормоны, в норме участвующие в регуляции тонуса артериол, - это адреналин инорадреналин, вырабатываемые мозговым веществом надпочечников.

Миогенная регуляция сводится к сокращению или расслаблению гладких мышц сосудов в ответ на изменения трансмурального давления; при этом напряжение в их стенке остается постоянным. Тем самым обеспечивается ауторегуляция местного кровотока - постоянство кровотока при меняющемся перфузионном давлении.

Метаболическая регуляция обеспечивает расширение сосудов при повышении основного обмена(за счет выброса аденозина и простагландинов) и гипоксии (также за счет выделения простагландинов).

Наконец, эндотелиальные клетки выделяют ряд вазоактивных веществ - окись азота,эйкозаноиды (производные арахидоновой кислоты), сосудосуживающие пептиды (эндотелин-1, ангиотензин II) и свободные радикалы кислорода.

12)давление крови в разных отделах сосудистого русла

Давление крови в различных участках сосудистой системы. Среднее давление в аорте поддерживается на высоком уровне (примерно 100 мм рт. ст.), поскольку сердце непрестанно перекачивает кровь в аорту. С другой стороны, артериальное давление меняется от систолического уровня 120 мм рт. ст. до диастолического уровня 80 мм рт. ст., поскольку сердце перекачивает кровь в аорту периодически, только во время систолы. По мере продвижения крови в большом круге кровообращения среднее давление неуклонно снижается, и в месте впадения полых вен в правое предсердие оно составляет 0 мм рт. ст. Давление в капиллярах большого круга кровообращения снижается от 35 мм рт. ст. в артериальном конце капилляра до 10 мм рт. ст. в венозном конце капилляра. В среднем «функциональное» давление в большинстве капиллярных сетей составляет 17 мм рт. ст. Этого давления достаточно для перехода небольшого количества плазмы через мелкие поры в капиллярной стенке, в то время как питательные вещества легко диффундируют через эти поры к клеткам близлежащих тканей. В правой части рисунке показано изменение давления в различных участках малого (легочного) круга кровообращения. В легочных артериях видны пульсовые изменения давления, как и в аорте, однако уровень давления значительно ниже: систолическое давление в легочной артерии - в среднем 25 мм рт. ст., а диастоли-ческое - 8 мм рт. ст. Таким образом, среднее давление в легочной артерии составляет всего 16 мм рт. ст., а среднее давление в легочных капиллярах равно примерно 7 мм рт. ст. В то же время общий объем крови, проходящий через легкие за минуту, - такой же, как и в большом круге кровообращения. Низкое давление в системе легочных капилляров необходимо для выполнения газообменной функции легких.

Если для описания движения крови в сосуде использовать фундаментальные физические законы, то, согласно закону Ома для электрической цепи:

Напряжение (скорость кровотока) = Разница давлений / Сопротивление сосуда .

Таким образом, с увеличением перепада давления скорость кровотока возрастает, а с увеличением сопротивления стенок сосуда, наоборот, снижается.

Сопротивление кровотоку возникает за счет внутреннего трения движении потока. Кровь относительно легко проходит по крупным сосудам, но небольшие артерии, и особенно артериолы и капилляры, обладают маленьким диаметром и, создавая сопротивление, замедляют кровоток (периферическое сопротивление). Таким образом, чем больше периферическое сопротивление, тем большим должно быть давление.

Кровоток в системе кровообращения создается за счет перепада давления между артериями и венами. Поскольку в системном круге среднее артериальное давление снижается от 100 мм рт. ст. до примерно 3 мм рт. ст., то перепад давления составляет 97 мм рт. ст. Поэтому при необходимости кровоток может оптимизироваться за счет изменения скорости (производительность работы сердца = сердечный выброс) и сопротивления сосудистой системы потоку крови (периферическое сопротивление). Отсюда для системного кровообращения получаем выражение:

Сердечный выброс = Перепад кровяного давления / Периферическое сопротивление.

Поскольку повышенное давление крови в системном кровотоке создает значительную нагрузку на стенки сосуда, оно поддерживается на относительно постоянном уровне.

Адаптация системы кровообращения к изменившимся условиям происходит, главным образом, за счет изменения темпа сердечной деятельности или периферического сопротивления.

Распределение сердечного выброса

Приток крови к различным органам в состоянии покоя или при нагрузке сильно колеблется и зависит от функции конкретного органа (степени потребления кислорода, интенсивности обменных процессов) и от местных анатомических особенностей.

Так, система легочного круга получает весь объем сердечного выброса (СВ), а параллельно связанные органы системного круга (мозг, желудочно-кишечный тракт, почки, мышцы, кожа) только его часть. Как правило, работающая мышца должна лучше снабжаться кровью, чем находящаяся в состоянии покоя, хотя кровоснабжение некоторых органов, например, почек, все время должно быть максимально высоким.

Распределение сердечного выброса по органам зависит от величины сопротивления системы сосудов, снабжающих конкретный орган кровью. Это сопротивление изменяется в широких пределах. Например, к мышцам, находящимся в покое, направляется 15-20% сердечного выброса, а при физической нагрузке эта величина может увеличиваться до 75%.

Относительно большая часть сердечного выброса поступает в желудочно-кишечный тракт при переваривании пищи. При физических нагрузках или при подъеме окружающей температуры также усиливается кровоснабжение кожи.

Такие органы, как головной мозг, крайне чувствительны к кислородной недостаточности и нуждаются в постоянном адекватном кровоснабжении (около 15% сердечного выброса). Для поддержания контрольной и выделительной функций почки должны получать 20-25 % сердечного выброса. Таким образом, по отношению к весу почек (0,5% от веса тела) степень их кровоснабжения очень высокая.

Общее периферическое сопротивление (ОПС) – это сопротивление току крови, присутствующее в сосудистой системе организма. Его можно понимать как количество силы, противодействующей сердцу по мере того, как оно перекачивает кровь в сосудистую систему.

Хотя общее периферическое сопротивление играет важнейшую роль в определении кровяного давления, оно является исключительно показателем состояния сердечно-сосудистой системы и его не следует путать с давлением, оказываемым на стенки артерий, которое служит показателем кровяного давления.

Составляющие сосудистой системы

Сосудистая система, которая отвечает за ток крови от сердца и к сердцу, может быть подразделена на две составляющие: системное кровообращение (большой круг кровообращения) и легочную сосудистую систему (малый круг кровообращения). Легочная сосудистая система доставляет кровь к легким, где та обогащается кислородом, и от легких, а системное кровообращение отвечает за перенос этой крови к клеткам организма по артериям, и возвращение крови обратно к сердцу после кровоснабжения. Общее периферическое сопротивление влияет на работу этой системы и в итоге может в значительной степени воздействовать на кровоснабжение органов.

Общее периферическое сопротивление описывается посредством частного уравнения:

ОПС = изменение давления / сердечный выброс

Изменение давления – это разность среднего артериального давления и венозного давления. Среднее артериальное давление равняется диастолическому давлению плюс одна треть разницы между систолическим и диастолическим давлением. Венозное кровяное давление может быть измерено при помощи инвазивной процедуры с применением специальных инструментов, которая позволяет физически определять давление внутри вены. Сердечный выброс – это количество крови, перекачиваемой сердцем за одну минуту.

Факторы влияющие на компоненты уравнения ОПС

Существует ряд факторов, которые могут значительно влиять на компоненты уравнения ОПС, таким образом, изменяя значения самого общего периферического сопротивления. Эти факторы включают диаметр сосудов и динамику свойств крови. Диаметр кровеносных сосудов обратно пропорционален кровяному давлению, поэтому меньшие кровеносные сосуды повышают сопротивление, таким образом, повышая и ОПС. И наоборот, более крупные кровеносные сосуды соответствуют менее концентрированному объему частиц крови, оказывающих давления на стенки сосудов, что означает более низкое давление.

Гидродинамика крови

Гидродинамика крови также может существенно способствовать повышению или понижению общего периферического сопротивления. За этим стоит изменение уровней факторов свертывания и компонентов крови, которые способны менять ее вязкость. Как можно предположить, более вязкая кровь вызывает большее сопротивление кровотоку.

Менее вязкая кровь легче перемещается через сосудистую систему, что приводит к понижению сопротивления.

В качестве аналогии можно привести разницу в силе, необходимой для перемещения воды и патоки.

Эта информация для ознакомления, за лечением обратитесь к врачу.

Большая Энциклопедия Нефти и Газа

Периферическое сопротивление

Периферическое сопротивление задавалось в интервале от 0.4 до 2.0 мм рт.ст. сек / см с шагом 0.4 мм рт.ст. сек / см. Сократимость связана с состоянием актомиозинового комплекса, работой регулирующих механизмов. Сократимость изменяется заданием значений МС от 1.25 до 1.45 с шагом 0.05, а также вариацией активных деформаций в некоторых периодах сердечного цикла. Модель позволяет изменять активные деформации в различные периоды систолы и диастолы, что воспроизводит регуляцию сократительной функции ЛЖ раздельным влиянием на быстрые и медленные кальциевые каналы. Активные деформации приняты постоянными на протяжении всей диастолы и равными от 0 до 0.004 с шагом 0.001 сначала при неизменных активных деформациях в систолу, затем при одновременном увеличении их значения в конце изоволюмического периода сокращения на величину деформаций в диастолу.  

Периферическое сопротивление сосудистой системы складывается из множества отдельных сопротивлений каждого сосуда.  

Основным механизмом перераспределения крови служит периферическое сопротивление, оказываемое текущей струе крови мелкими артериальными сосудами и артериолами. В ото время во все остальные органы, в том числе и поч-кк, поступает только около 15 % крови. В покое же на вею массу мышц, составляющих около половины массы тела, приходится лишь около 20 % крови, выбрасываемой сердцем за минуту. Итак, изменение жизненной ситуации обязательно сопровождается своеобразной сосудистой реакцией в виде перераспределения крови.  

Изменение систолического и диастоли-ческого давления у этих больных происходят параллельно, что создает впечатление роста периферического сопротивления по мере нарастания гипердинамии сердца.  

В течение следующих 15 с (с) определяются систолическое, диастолическое и среднее давление, частота сердечных сокращений, периферическое сопротивление, ударный объем, ударная работа, ударная мощность и сердечный выброс. Кроме того, производится усреднение показателей уже исследованных сердечных циклов, а также выдача документов с указанием времени суток.  

Полученные данные дают основание полагать, что при эмоциональном стрессе, характеризующемся катехоламиновым взрывом, развивается системный спазм артериол, что способствует росту периферического сопротивления.  

Характерным для изменений артериального давления у этих больных является также торпидность в восстановлении исходной величины диастолического давления, что в сочетании с данными пъезографии артерий конечностей говорит о стойком повышении у них периферического сопротивления.  

Величина объема крови, покинувшей грудную полость за время t с момента начала изгнания Sam (t), находилась расчетно как функция артериального давления, модуля объемной упругости экстраторакальной части аортально-артериальной системы и периферического сопротивления артериальной системы.  

Сопротивление току крови меняется в зависимости от сокращения или расслабления гладкой мускулатуры сосудистых стенок, особенно в артериолах. При сужении сосудов (ва-зоконстрикции) периферическое сопротивление увеличивается, а при их расширении (вазо-дилатации) уменьшается. Увеличение сопротивления приводит к повышению кровяного давления, а снижение сопротивления - к его падению. Все эти изменения регулируются сосудодвигательным (вазомоторным) центром продолговатого мозга.  

Зная эти две величины, вычисляют периферическое сопротивление - важнейший показатель состояния сосудистой системы.  

По мере снижения диастолической составляющей и увеличения индекса периферического сопротивления, по мнению авторов, нарушается трофика тканей глаза и зрительные функции падают даже при нормальном офтальмотонусе. На наш взгляд, в подобных ситуациях заслуживает специального внимания состояние также внутричерепного давления.  

Учитывая, что динамика диастолическо-го давления косвенно отражает состояние периферического сопротивления, мы полагали, что оно будет снижаться при физической нагрузке у обследуемых больных, так как реальная мышечная работа в еще большей степени приведет к расширению мышечных сосудов, чем при эмоциональном напряжении, которое лишь провоцирует готовность мышц к действию.  

Аналогично в организме осуществляется многосвязное регулирование артериального давления и объемной скорости кровотока. Так, при снижении артериального давления компенсаторно повышаются тонус сосудов и периферическое сопротивление току крови. Это в свою очередь приводит к увеличению артериального давления в сосудистом русле до места сужения сосудов и к понижению кровяного давления ниже места сужения по ходу движения крови. Одновременно с этим в сосудистом русле уменьшается объемная скорость кровотока. Благодаря особенностям регионарного кровотока артериальное давление и объемная скорость крови в мозге, сердце и других органах возрастают, а в остальных органах снижаются. В результате проявляются закономерности многосвязного регулирования: при нормализации артериального давления изменяется другая регулируемая величина - объемный кровоток.  

Эти цифры показывают, что в фоне значимость средовой и наследственной детерминант приблизительно одинакова. Это свидетельствует о том, что различные компоненты, обеспечивающие величину систолического давления (ударный объем, частота пульса, величина периферического сопротивления), совершенно четко передаются по наследству и активизируются именно в период каких-либо экстремальных воздействий на организм, сохраняя гомеостаз системы. Высокая сохранность величины коэффициента Хольцингера в период 10 мин.  

Периферическое сопротивление сосудов (ОПСС)

Под этим термином понимают общее сопротивление всей сосудистой системы выбрасываемому сердцем потоку крови. Это соотношение описывается уравнением:

Используется для расчета величины этого параметра или его изменений. Для расчета ОПСС необходимо определить величину системного артериального давления и сердечного выброса.

Величина ОПСС состоит из сумм (не арифметических) сопротивлений регионарных сосудистыхотделов. При этом в зависимости от большей или меньшей выраженности изменений регионарного сопротивления сосудов в них соответственно будет поступать меньший или больший объем крови, выбрасываемый сердцем.

На этом механизме базируется эффект «централизации» кровообращения у теплокровных, обеспечивающий в тяжелых или угрожающих организму условиях (шок, кровопотеря и др.) перераспределение крови, прежде всего, к головному мозгу и миокарду.

Сопротивление, разность давления и поток связаны основным уравнением гидродинамики: Q=AP/R. Так как поток (Q) должен быть идентичен в каждом из последовательно расположенных отделов сосудистой системы, то падение давления, которое происходит на протяжении каждого из этих отделов, является прямым отражением сопротивления, которое существует в данном отделе. Таким образом, существенное падение артериального давления, при прохождении крови через артериолы, указывает, что артериолы обладают значительным сопротивлением кровотоку. Среднее давление незначительно снижается в артериях, так как они обладают незначительным сопротивлением.

Аналогично умеренное падение давления, которое происходит в капиллярах, является отражением того, что капилляры обладают умеренным сопротивлением по сравнению с артериолами.

Поток крови, протекающий через отдельные органы, может изменяться в десять и более раз. Так как среднее артериальное давление является относительно устойчивым показателем деятельности сердечно-сосудистой системы, существенные изменения кровотока органа являются следствием изменения его общего сосудистого сопротивления кровотоку. Последовательно расположённые сосудистые отделы объединены в определенные группы в пределах органа, и общее сосудистое сопротивление органа должно равняться сумме сопротивлений его последовательно соединенных сосудистых отделов.

Так как артериолы обладают значительно большим сосудистым сопротивлением по сравнению с другими отделами сосудистого русла, то общее сосудистое сопротивление любого органа определяется в значительной степени сопротивлением артериол. Сопротивление артериол, конечно, в значительной степени определяется радиусом артериол. Следовательно, кровоток через орган в первую очередь регулируется изменением внутреннего диаметра артериол за счет сокращения или расслабления мышечной стенки артериол.

Когда артериолы органа изменяют свой диаметр, то меняется не только кровоток через орган, но претерпевает изменения и падение артериального давления, происходящее в данном органе.

Сужение артериол вызывает более значительное падение давления в артериолах, что приводит к увеличению артериального давления и одновременному снижению изменений сопротивления артериол на давление в сосудах.

(Функция артериол в какой-то степени напоминает роль дамбы: в результате закрытия ворот дамбы снижается поток и повышается ее уровень в резервуаре позади плотины и снижается уровень после нее).

Напротив, увеличение органного кровотока, вызванное расширением артериол, сопровождается снижением артериального давления и увеличением капиллярного давления. Из-за изменений гидростатического давления в капиллярах сужение артериол ведет к транскапиллярной реабсорбции жидкости, в то время как расширение артериол способствует транскапиллярной фильтрации жидкости.

Среди заболеваний сердца и сосудов одним из основных является артериальная гипертензия (АГ). Это одна из самых значимых неинфекционных пандемий, определяющих структуру сердечно- сосудистой заболеваемости и смертности.

Процессы ремоделирования при АГ захватывают не только сердце и крупные эластические и мышечные артерии, но и артерии меньшего диаметра (резистивные артерии). В связи с этим, целью исследования явилось изучение состояния периферического сосудистого сопротивления брахиоцефальных артерий у пациентов с различной степенью АГ с помощью современных неинвазивных методов исследования.

Исследование проведено у 62 больных АГ в возрасте от 29 до 60 лет, (средний возраст-44,3±2,4 года). Среди них 40 женщин и 22 мужчин. Длительность заболевания составила 8,75±1,6 лет. В исследование включались пациенты с мягкой - АГ-1 (систолическое АД и диастолическое АД соответственно от 140/90 до 160/100 мм рт. ст.) и умеренной - АГ-2 (систолическое АД и диастолическое АД соответственно от 160/90 до 180/110 мм рт. ст.). Из группы обследованных, считающих себя здоровыми, выделена подгруппа пациентов с высоким нормальным АД (САД и ДАД соответственно до 140/90 мм рт. ст.)

У всех обследованных оценивались кроме общеклинических, показатели ЭХОКГ, СМАД, проводилось исследование индексов периферического сопротивления (Pourcelot-Ri и Gosling-Pi), комплекса интима-медиа (КИМ) по общим сонным (ОСА), внутренним сонным (ВСА) артериям методом ультразвуковой допплерографии. Общее периферическое сопротивление сосудов (ОПСС) рассчитывали общепринятым методом по формуле Франка-Пуазейля. Статистическую обработку результатов осуществляли при помощи пакета программ Microsoft Excel.

При анализе показателей АД и эхокардиографических характеристик выявлено значительное увеличение (р<0,01) пульсового давления и толщины межжелудочковой перегородки, особенно в группе больных с АГ-2. В этом контингенте установлены признаки диастолической дисфункции левого желудочка и увеличение общего периферического сосудистого сопротивления (ОПСС) (р<0,05). В группе больных АГ-2 обнаружено утолщение КИМ (р<0,01) в сравнении с показателями здоровых лиц. При сравнительной оценке изучаемого показателя в группе больных АГ-1 и АГ-2 выявлено значительное превалирование комплекса интима- медиа у лиц с АГ-2 (р<0,05). В этой же группе лиц выявлено увеличение внутрипросветного диаметра ОСА и ВСА (р<0,01).

При анализе индексов периферического сопротивления (Pourcelot-Ri и Gosling-Pi) по ОСА наблюдалось повышение Ri у всех больных АГ (р<0,05) и тенденция к повышению Pi в группе лиц в высоким нормальным АД. По ВСА- достоверное повышение Pi и Ri в группе больных АГ-2 (р<0,05) и тенденция к повышению Pi в группе лиц с АГ1.

При корреляционном анализе установлена прямая зависимость между уровнем среднего АД и диаметром экстракраниальных сосудов (r =0,51 , р<0,01), ОПСС (r =0,56 , р<0,01) и индексами периферического сосудистого сопротивления (Pi и Ri) (r =0,61 и r=0,53 соответственно, р<0,01), что предполагает развитие сосудистого ремоделирования и умеренное уменьшение растяжимости сосудов по мере увеличения уровня среднего АД.

Таким образом, стойкое хроническое повышение артериального давления приводит к гипертрофии гладкомышечных элементов медии с развитием сосудистого ремоделирования брахиоцефальных артерий.

Библиографическая ссылка

URL: http://fundamental-research.ru/ru/article/view?id=3514 (дата обращения: 16.03.2018).

кандидатов и докторов наук

Фундаментальные исследования

Журнал издается с 2003 года. В журнале публикуются научные обзоры, статьи проблемного и научно-практического характера. Журнал представлен в Научной электронной библиотеке. Журнал зарегистрирован в Centre International de l’ISSN. Номерам журналов и публикациям присваивается DOI (Digital object identifier).

Индексы периферического сопротивления

ВСА – внутренняя сонная артерия

ОСА – общая сонная артерия

НСА – наружная сонная артерия

НБА – надблоковая артерия

ПА – позвоночная артерия

ОА – основная артерия

СМА – средняя мозговая артерия

ПМА – передняя мозговая артерия

ЗМА – задняя мозговая артерия

ГА – глазничная артерия

ПКА – подключичная артерия

ПСА – передняя соединительная артерия

ЗСА – задняя соединительная артерия

ЛСК – линейная скорость кровотока

ТКД – транскраниальная допплерография

АВМ – артерио-венозная мальформация

БА – бедренная артерия

ПКА – подколенная артерия

ЗБА – задняя большеберцовая артерия

ПБА – передняя большеберцовая артерия

PI – пульсационный индекс

RI – индекс периферического сопротивления

SBI – индекс спектрального расширения

Ультразвуковая допплерография магистральных артерий головы

В настоящее время церебральная допплерография стала неотъемлемой частью диагностического алгоритма при сосудистых заболеваниях головного мозга. Физиологической основой ультразвуковой диагностики является эффект Допплера, отрытый австрийским физиком Кристианом Андреасом Допплером в 1842 году и описанный в работе “О цветном свете двойных звезд и некоторых других звезд на небесах”.

В клинической практике впервые эффект Допплера был использован в 1956 г. Satomuru при проведении ультразвукового исследования сердца. В 1959 г. Franklin использовал эффект Допплера для изучения кровотока в магистральных артериях головы. В настоящее время существует несколько ультразвуковых методик, в основе которых лежит использование эффекта Допплера, предназначенных для исследования сосудистой системы.

Ультразвуковая допплерография, как правило, используется для диагностики патологии магистральных артерий, имеющих относительно большой диаметр и расположенных поверхностно. К ним относятся магистральные артерии головы и конечностей. Исключение составляют интракраниальные сосуды, которые также доступны исследованию при применении импульсного ультразвукового сигнала низкой частоты (1-2 МГц). Разрешающая способность данных ультразвуковой допплерографии ограничивается выявлением: косвенных признаков стенозов, окклюзий магистральных и интракраниальных сосудов, признаков артерио-венозного шунтирования. Обнаружение допплерографических признаков тех или иных патологических признаков служит показанием для более детального обследования пациента – дуплексного исследования сосудов или ангиографии. Таким образом, ультразвуковая допплерогафия относится к срининговому методу. Несмотря на это, ультразвуковая допплерография широко распространена, экономична и вносит весомый вклад в диагностику заболеваний сосудов головы, артерий верхних и нижних конечностей.

Специальной литературы по ультразвуковой допплерографии достаточно, однако большая часть в ней посвящена дуплексному сканированию артерий и вен. В данном пособии описывается церебральная допплерография, ультразвуковое допплеровское исследование конечностей, методика их проведения и применение в диагностических целях.

Ультразвук – волнообразное распространяющееся колебательное движение частиц упругой среды с частотой свышеГц. Эффект Допплера заключается в изменении частоты ультразвукового сигнала при отражении от движущихся тел по сравнению с первоначальной частотой посланного сигнала. Ультразвуковой допплеровский прибор представляет собой локационное устройство, принцип работы которого заключается в излучении зондирующих сигналов в тело пациента, приеме и обработке эхосигналов, отраженных от движущихся элементов кровотока в сосудах.

Допплеровский сдвиг частот (∆f) – зависит от скорости движения элементов крови (v), косинуса угла между осью сосуда и направлением ульразвукового луча (cos a) , скорости распространения ультразвука в cреде (с) и первичной частоты излучения (f °). Данная зависимость описывается допплеровским уравнением:

2 · v · f ° · cos a

Из этого уравнения следует, что увеличение линейной скорости кровотока по сосудам пропорционально скорости движения частиц и наоборот. Нужно отметить, что прибор регистрирует только допплеровский сдвиг частот (в кГц), значения же скорости вычисляются по допплеровскому уравнению, при этом скорость распространения ультразвука в среде принимается как постоянная и равная 1540 м / сек, а первичная частота излучения соответствует частоте датчика. При сужении просвета артерии (например, бляшкой) – скорость кровотока возрастает, тогда как в местах расширения сосудов она будет снижаться. Разница частот, отражающая линейную скорость движения частиц, может быть отображена графически в виде кривой изменения скорости в зависимости от сердечного цикла. При анализе полученной кривой и спектра потока возможна оценка скоростных и спектральных параметров кровотока и вычисление ряда индексов. Таким образом, по изменению “звучания” сосуда и характерным изменениям допплеровских параметров можно косвенно судить о наличии в изучаемой области различных патологических изменений, таких как:

  • - окклюзия сосуда по исчезновению звука в проекции облитерированного сегмента и падению скорости до 0, может быть вариабельность отхождения или извитость артерии, например ВСА;
  • - сужение просвета сосуда по увеличению скорости кровотока в этом сегменте и увеличению “звучания” на данном участке, а после стеноза, наоборот, скорость будет ниже нормальной и звук более низкий;
  • - артерио – венозный шунт, извитость сосуда, перегиб и в связи с этим изменение условий циркуляции приводит к самым разнообразным модификациям звучания и кривой скорости на данном участке.

2.1. Характеристика датчиков для допплерографии.

Широкий спектр ультразвуковых исследований сосудов современным допплеровским прибором обеспечивается за счет применения датчиков различного назначения, отличающихся между собой характеристиками излучаемого ультразвука, а также конструктивными параметрами (датчики для скрининговых обследований, датчики со специальными держателями для мониторинга, плоские датчики для хирургических применений).

Для исследования экстракраниальных сосудов используются датчики с частотой 2, 4, 8 МГц, интракраниальных сосудов – 2, 1 МГц. Ультразвуковой датчик содержит пьезоэлектрический кристалл, вибрирующий под воздействием переменного тока. Эта вибрация генерирует УЗ луч, который движется от кристалла. Допплеровские датчики имеют два режима работы: постоянноволновой (continuous wave CW) и импульсный (pulsed wave PW). У постоянноволнового датчика имеется 2 пьезокристалла, один постоянно излучает, второй – принимает излучение. В датчиках PW один и тот же кристалл является принимающим и излучающим. Режим импульсного датчика позволяет осуществлять локацию на различных, произвольно выбираемых глубинах, в связи с чем, именно он используется для инсонации интракраниальных артерий. Для датчика 2 МГц существует 3-х сантиметровая “ мертвая зона ” , при глубине проникновения 15 см зондирования; для датчика 4 МГц ­– 1,5 см “ мертвая зона ” , зона зондирования 7,5 см; 8 МГц – 0,25 см “ мертвая зона ’ , 3,5 см глубина зондирования.

III. Ультразвуковая допплерография МАГ.

3.1. Анализ показателей допплерограммы.

Кровоток в магистральных артериях имеет ряд гидродинамических особенностей, в связи с чем, выделяют два основных варианта потока:

  • - ламинарный (параболический) – имеется градиент скорости потоков центральных (максимальные скорости) и пристеночных (минимальные скорости) слоев. Разница между скоростями максимальна в систолу и минимальна в диастолу. Слои не смешиваются между собой;
  • - турбулентный – вследствие неровностей сосудистой стенки, высокой скорости кровотока слои смешиваются, эритроциты начинают совершать хаотическое движение в разных направлениях.

Допплерограмма – графическое отражение допплеровского сдвига частот во времени – имеет две основных составляющих:

  • - огибающая кривая – линейная скорость в центральных слоях потока;
  • - допплеровский спектр – графическая характеристика пропорционального соотношения пулов эритроцитов, движущихся с различными скоростями.

При проведении спектрального допплеровского анализа оцениваются качественные и количественные параметры. К качественным параметрам относятся:

  • 1. форма допплеровской кривой (огибающей допплеровского спектра)
  • 2. наличие “ спектрального ” окна.

К количественным параметрам относятся:

  • 1. Скоростные характеристики потока.
  • 2. Уровень периферического сопротивления.
  • 3. Показатели кинематики.
  • 4. Состояние допплеровского спектра.
  • 5. Реактивность сосудов.

1. Скоростные характеристики потока определяются по огибающей кривой. Выделяют:

  • – систолическую скорость кровотока Vs (максимальная скорость)
  • – конечную диастолическую скорость кровотока Vd ;
  • – среднюю скорость кровотока (Vm) – отражается среднее значение скорости кровотока за сердечный цикл. Средняя скорость кровотока рассчитывается по формуле:
  • – средневзвешенную скорость кровотока, определяется по характеристикам допплеровского спектра (отражает среднюю скорость движения эритроцитов по всему поперечнику сосуда – истинно средняя скорость кровотока)
  • – определенную диагностическую ценность имеет показатель межполушарной асимметрии линейной скорости кровотока (КА) в одноименных сосудах:

где V 1, V 2 – средняя линейная скорость кровотока в парных артериях.

2. Уровень периферического сопротивления – результирующее вязкости крови, внутричерепного давления, тонуса резистивных сосудов пиально-капиллярной сосудистой сети – определяется по значению индексов:

  • – систоло – диастолический коэффициент (СДК) Stuart:
  • – индекс периферического сопротивления, или индекс резистивности (ИС) Pourselot (RI):

Наиболее чувствителен в отношении изменения уровня периферического сопротивления индекс Gosling .

Межполушарная асимметрия уровней периферического сопротивления характеризуется трансмиссионным пульсационным индексом (ТПИ) Lindegaard:

где ПИ пс, ПИ зс – пульсационный индекс в средней мозговой артерии на пораженной и здоровой стороне соответственно.

3. Индексы кинематики потока косвенно характеризуют потерю потоком крови кинетической энергии и тем самым свидетельствуют об уровне “проксимального” сопротивления потоку:

Индекс подъема пульсовой волны (ИППВ) определяется по формуле:

Где Т о – время начала систолы,

Т с – время достижения пиковой ЛСК,

Т ц – время, занимаемое сердечным циклом;

4. Допплеровский спектр характеризуется двумя основными параметрами: частотой (величина сдвига линейной скорости кровотока) и мощностью (выражается в децибеллах и отражает относительное количество эритроцитов, движущихся с данной скоростью). В норме подавляющая часть мощности спектра приближена к огибающей скорости. При патологических состояниях, приводящих к турбулентному потоку, спектр “расширяется“ – возрастает количество эритроцитов, совершающих хаотическое движение или перемещающихся в пристеночные слои потока.

Индекс спектрального расширения. Вычисляется как отношение разности пиковой систолической скорости кровотока и усредненной по времени средней скорости кровотока к пиковой систолической скорости. SBI = (Vps - NFV)/Vhs = 1 - TAV/ Vps.

Состояние допплеровского спектра может быть определено с помощью индекса расширения спектра (ИРС) (стеноза) Arbelli:

где Fo – спектральное расширение в неизменном сосуде;

Fm – спектральное расширение в патологически измененном сосуде.

Систоло-диастолическое отношение. Это отношение величины пиковой систолической скорости кровотока к конечно-диастолической скорости кровотока, является косвенной характеристикой состояния сосудистой стенки, в частности ее эластических свойств. Одной из наиболее частых патологий, приводящих к изменению данной величины, является артериальная гипертензия.

5. Реактивность сосудов. Для оценки реактивности сосудистой системы головного мозга используется коэффициент реактивности ­– отношение показателей, характеризующих деятельность системы кровообращения в состоянии покоя, к их значению на фоне воздействия нагрузочного стимула. В зависимости от природы способа воздействия на рассматриваемую систему регуляторные механизмы будут стремиться вернуть интенсивность мозгового кровотока к исходному уровню, либо изменить ее, чтобы приспособиться к новым условиям функционирования. Первое характерно при использовании стимулов физической природы, второе – химической. Учитывая целостность и анатомическую и функциональную взаимосвязанность составляющих системы кровообращения, то при оценке изменений параметров кровотока по интракраниальным артериям (по средней мозговой артерии) на определенный нагрузочный тест необходимо рассматривать реакцию не каждой изолированной артерии, а двух одноименных одновременно, и именно на этом оценивать тип реакции.

В настоящее время существует следующая классификация типов реакций на функциональные нагрузочные тесты:

  • 1) однонаправленная положительная – характеризуется при отсутствии существенной (значимой для каждого конкретного теста) сторонней асимметрии при ответе на функциональный нагрузочный тест с достаточным стандартизованным изменением параметров кровотока;
  • 2) однонаправленная отрицательная – при двустороннем сниженном или отсутствующем ответе на функциональный нагрузочный тест;
  • 3) разнонаправленная – с положительной реакцией на одной стороне и отрицательной (парадоксальной) – на контрлатеральной, которая может быть двух типов: а) с преобладанием ответа на стороне поражения; б) с преобладанием ответа на противоположной стороне.

Однонаправленная положительная реакция соответствует удовлетворительной величине церебрального резерва, разнонаправленная и однонаправленная отрицательная – сниженной (или отсутствующей).

Среди функциональных нагрузок химической природы наиболее полно отвечает требованиям функционального теста ингаляционная проба с вдыханием в течение 1-2 мин газовой смеси, содержащей 5-7% СО2 в воздухе. Способность мозговых сосудов к расширению в ответ на вдыхание углекислого газа может резко ограничиться или вовсе утрачиваться, вплоть до появления инверсированных реакций, при стойком снижении уровня перфузионного давления, возникающем, в частности, при атеросклеротическом поражении МАГ и, особенно, несостоятельности путей коллатерального кровоснабжения.

В противоположность гиперкапнии гипокапния вызывает сужение как крупных, так и мелких артерий, однако не приводит к резким изменениям давления в микроциркуляторном русле, что способствует поддержанию адекватной перфузии мозга.

Сходным по механизму действия с гиперкапническим нагрузочным тестом является проба с задержкой дыхания (Breath Holding) . Сосудистая реакция, выражающаяся в расширении артериолярного русла и проявляющаяся увеличением скорости кровотока в крупных мозговых сосудах, возникает в результате повышения уровня эндогенного СО2 за счет временного прекращения поступления кислорода. Задержка дыхания приблизительно насек приводит к возрастанию систолической скорости кровотока на 20-25% по сравнению с исходной величиной.

В качестве тестов миогенной направленности используют: тест кратковременной компрессии общей сонной артерии, сублингвальный прием 0,25 – 0,5 мг нитроглицерина, орто- и антиортостатические пробы.

Методика исследования цереброваскулярной реактивности включает в себя:

а) оценку исходных значений ЛСК в средней мозговой артерии (передней, задней) с двух сторон;

б) проведение одной из вышеперечисленных функциональных нагрузочных проб;

в) повторную оценку через стандартный интервал времени ЛСК в исследуемых артериях;

г) вычисление индекса реактивности, отображающего положительный прирост параметра усредненной по времени максимальной (средней) скорости кровотока в ответ на предъявляемую функциональную нагрузку.

Для оценки характера реакции на функциональные нагрузочные тесты используется следующая классификация типов реакций:

    • 1) положительная – характеризуется положительным изменением параметров оценки с величиной индекса реактивности более 1,1;
    • 2) отрицательная – характеризуется отрицательным изменением параметров оценки с величиной индекса реактивности в диапазоне от 0,9 до 1,1;
    • 3) парадоксальная – характеризуется парадоксальным изменением параметров оценки индекса реактивности менее 0,9.

    3.2. Анатомия каротидных артерий и методика их исследования.

    Анатомия общей сонной артерии (ОСА). От дуги аорты с правой стороны отходит плечеголовной ствол, который делится на уровне грудино-ключичного сочленения на общую сонную артерию (ОСА) и правую подключичную артерию. Слева от дуги аорты отходят и общая сонная артерия, и подключичная артерия; ОСА направляется вверх и латерально до уровня грудино-ключичного сочленения, далее обе ОСА идут кверху параллельно друг другу. В большинстве случаев ОСА делится на уровне верхнего края щитовидного хряща или подъязычной кости на внутреннюю сонную артерию (ВСА) и наружную сонную артерию (НСА). Кнаружи от ОСА лежит внутренняя яремная вена. У людей, имеющих короткую шею, разделение ОСА происходит более высоко. Длина ОСА справа в среднем – 9,5 (7-12) см, слева 12,5 (10-15) см. Варианты ОСА: короткая ОСА длиной 1-2 см; отсутствие ее – ВСА и НСА начинаются самостоятельно от дуги аорты.

    Исследование магистральных артерий головы проводится в положении пациента лежа на спине, перед началом исследования пальпируются каротидные сосуды, определяется их пульсация. Для диагностики каротидных и позвоночных артерий используется датчик 4 МГц.

    Для инсонации ОСА датчик ставится по внутреннему краю кивательной мышцы под угломградусов в краниальном направлении, последовательно лоцируя артерию на всем протяжении до бифуркации ОСА. Кровоток ОСА направлен от датчика.

    Рис.1. Допплерограмма ОСА в норме.

    Для допплерограммы ОСА характерно высокое систоло-диастолическое отношение (в норме до 25-35%), максимум спектральной мощности у огибающей кривой, имеется четкое спектральное “окно”. Отрывистый насыщенный среднечастотный звук, сменяющийся длительным низкочастотным звуком. Допплерограмма ОСА имеет сходство с допплерограммами НСА и НБА.

    ОСА на уровне верхнего края щитовидного хряща делится на внутреннюю и наружную сонные артерии. ВСА является наиболее крупной ветвью ОСА и лежит чаще всего сзади и латерально от НСА. Нередко отмечается извитость ВСА, она может быть одно и двусторонней. ВСА, поднимаясь вертикально, достигает наружного отверстия сонного канала и проходит через него в череп. Варианты ВСА: одно- или двусторонняя аплазия или гипоплазия; самостоятельное отхождение от дуги аорты или от плечеголовного ствола; необычно низкое начало от ОСА.

    Исследование проводится в положении больного лежа на спине у угла нижней челюсти датчиком 4 или 2 МГц под углом 45–60 градусов в краниальном направлении. Направление кровотока по ВСА от датчика.

    Нормальная допплерограмма ВСА: быстрый крутой подъем, заостренная вершина, медленный пилообразный плавный спуск. Систоло-диастолическое отношение около 2,5. Максимум спектральной мощности ­– у огибающей, имеется спектральное “окно”; характерен дующий музыкальный звук.

    Рис.2. Допплерограмма ВСА в норме.

    Анатомия позвоночной артерии (ПА) и методика исследования .

    ПА является ветвью подключичной артерии. Справа она начинается на расстоянии 2,5 см, слева – 3,5 см от начала подключичной артерии. Позвоночные артерии подразделяются на 4 сегмента. Начальный сегмент ПА (V1), располагаясь позади передней лестничной мышцы, направляется вверх, входит в отверстие поперечного отростка 6-го (реже 4-5 или 7-го) шейного позвонка. Сегмент V2 - шейная часть артерии проходит в канале, образованном поперечными отростками шейных позвонков и поднимается вверх. Выйдя через отверстие в поперечном отростке 2-го шейного позвонка (сегмент V3) ПА идет кзади и латерально (1-й изгиб), направляясь в отверстие поперечного отростка атланта (2-й изгиб), затем поворачивает на дорзальную сторону боковой части атланта (3-й изгиб) повернув медиально и достигнув большего затылочного отверстия (4-й изгиб), она проходит через атланто-затылочную мембрану и твердую мозговую оболочку в полость черепа. Далее внутричерепная часть ПА (сегмент V4) идет на основание мозга латерально от продолговатого мозга, а затем кпереди от него. Обе ПА на границе продолговатого мозга и моста сливаются в одну основную артерию. Примерно в половине случаев одна или обе ПА до момента слияния имеют S­ - образный изгиб.

    Исследование ПА выполняется в положении больного лежа на спине датчиком 4 МГц или 2МГц в сегменте V3. Датчик располагают по заднему краю кивательной мышцы на 2-3 см ниже сосцевидного отростка, направляя ультразвуковой луч к противоположной орбите. Направление кровотока в сегменте V3 из-за наличия изгибов и индивидуальных особенностей хода артерии может быть прямым, обратным и двунапраленным. Для идентификации сигнала ПА выполняют пробу с пережатием гомолатеральной ОСА, если кровоток не уменьшается значит сигнал ПА.

    Кровоток в позвоночной артерии характеризуется непрерывной пульсацией и достаточным уровнем диастолической составляющей скорости, что также является следствием низкого периферического сопротивления в позвоночной артерии.

    Рис.3. Допплерограмма ПА.

    Анатомия надблоковой артерии и методика исследования .

    Надблоковая артерия (НБА) является одной из конечных ветвей глазничной артерии. Глазничная артерия отходит от медиальной стороны передней выпуклости сифона ВСА. Она входит в глазницу через канал зрительного нерва и на медиальной стороне делится на свои конечные ветви. НБА выходит из полости орбиты через лобную вырезку и анастомозирует с надглазничной артерией и с поверхностной височной артерией, ветвями НСА.

    Исследование НБА проводится при закрытых глазах датчиком 8 МГц, который располагается у внутреннего угла глаза в направление к верхней стенке глазницы и медиально. В норме направление кровотока по НБА к датчику (антеградный кровоток). Кровоток в надблоковой артерии имеет непрерывную пульсацию, высокий уровень диастолической составляющей скорости и непрерывный звуковой сигнал, что является следствием низкого периферического сопротивления в бассейне внутренней сонной артерии. Доплерограмма НБА типична для экстракраниального сосуда (имеет сходство с допплерограммами НСА и ОСА). Высокий крутой систолический пик с быстрым подъемом, острой вершиной и быстрым ступенчатым спуском, сменяющийся плавным спуском в диастолу, высокое систоло-диастолическое отношение. Максимум спектральной мощности сосредоточен в верхней части допплерограммы, вблизи огибающей; спектральное “окно” выражено.

    Рис.4. Допплерограмма НБА в норме.

    Форма кривой скорости кровотока в периферических артериях (подключичная, плечевая, локтевая, лучевая) существенно отличаются от формы кривой артерий, снабжающих мозг. В силу высокого периферического сопротивления этих сегментов сосудистого русла практически отсутствует диастолическая составляющая скорости и кривая скорости кровотока располагается на изолинии. В норме кривая скорости кровотока периферических артерий имеет три компонента: систолическую пульсацию, обусловленную прямым кровотоком, обратный кровоток в период ранней диастолы, связанный с артериальным рефлюксом, и небольшой положительный пик в период поздней диастолы после отражения крови от створок аортального клапана. Подобный тип кровотока называется магистральным.

    Рис. 5. Допплерограмма периферических артерий, магистральный тип кровотока.

    3.3. Анализ потоков допплерографии.

    На основании результатов анализа допплерографии можно выделить основные потоки:

    1) магистральный поток,

    2) поток стеноза,

    4) остаточный поток,

    5) затрудненная перфузия,

    6) паттерн эмболии,

    7) церебральный ангиоспазм.

    1. Магистральный поток характеризуется нормальными (для конкретной возрастной группы) показателями линейной скорости кровотока, резистивности, кинематики, спектра, реактивности. Это трехфазная кривая, состоящая из систолического остроконечного пика, ретроградного пика, возникающего в диастолу вследствие ретроградного тока крови в сторону сердца до момента закрытия аортального клапана и третий антеградный небольшой пик возникает в конце диастолы, и объясняется возникновением слабого антеградного кровотока после отражения крови от створок аортального клапана. Магистральный тип кровотока характерен для периферических артерий.

    2. При стенозировании просвета сосуда (гемодинамический вариант: несоответствие диаметра сосуда нормальному объемному кровотоку, (сужение просвета сосуда более 50%), что встречается при атеросклеротических поражениях, сдавлении сосуда опухолью, костными образованиями, перегибе сосуда) вследствие эффекта Д. Бернулли возникают следующие изменения:

    • возрастает линейная преимущественно систолическая скорость кровотока;
    • уровень периферического сопротивления незначительно снижается (за счет включения ауторегуляторных механизмов, направленных на снижение периферического сопротивления)
    • индексы кинематики потока существенно не изменяются;
    • прогрессивное, пропорциональное степени стеноза, расширение спектра (индекс Аrbelli соответствует % стеноза сосуда по диаметру)
    • снижение церебральной реактивности преимущественно за счет сужения вазодиляторного резерва при сохраненных возможностях к вазоконстрикции.

    3. При шунтирующих поражениях сосудистой системы головного мозга – относительном стенозе, когда возникает несоответствие объемного кровотока нормальному диаметру сосуда (артерио–венозные мальформации, артериосинусные соустья, избыточная перфузия,) допплерографический паттерн характеризуется:

    • значительным повышением (преимущественно за счет диастолической) линейной скорости кровотока пропорционально уровню артерио–венозного сброса;
    • значительным снижением уровня периферического сопротивления (за счет органического поражения сосудистой системы на уровне резистивных сосудов, определяющего низкий уровень гидродинамического сопротивления в системе)
    • относительной сохранностью индексов кинематики потока;
    • отсутствием выраженных изменений допплеровского спектра;
    • резким снижением цереброваскулярной реактивности, преимущественно за счет сужения вазоконстрикторного резерва.

    4. Остаточный поток – регистируется в сосудах, расположенных дистальнее зоны гемодинамически значимой окклюзии (тромбоз, закупорка сосуда, стеноз% по диаметру). Характеризуется:

    • снижением ЛСК, преимущественно систолической составляющей;
    • снижается уровень периферического сопротивления за счет включения ауторегуляторных механизмов, вызывающих дилятацию пиально-капиллярной сосудистой сети;
    • резко снижены показатели кинематики (“сглаженный поток”)
    • допплеровский спектр относительно низкой мощности;
    • резкое снижение реактивности, преимущественно за счет вазодиляторного резерва.

    5. Затрудненная перфузия – характерна для сосудов, сегментов расположенных проксимальнее зоны аномально высокого гидродинамического эффекта. Отмечается при внутричерепной гипертензии, диастолической вазоконстрикции, глубокой гипокапнии, артериальной гипертензии. Харарктеризуется:

    • снижением ЛСК за счет диастолической составляющей;
    • значительным повышением уровня периферического сопротивления;
    • мало изменяются показатели кинематики и спектра;
    • значительно снижается реактивность: при внутричерепной гипертензии – на гиперкапническую нагрузку, при функциональной вазоконстрикции - на гипокапническую.

    7. Церебральный ангиоспазм – возникает в результате сокращения гладкой мускулатуры церебральных артерий при субарахноидальном кровоизлиянии, инсульте, мигрени, артериальной гипо и гипертензии, дисгормональных нарушениях и др. заболеваниях. Характеризуется высокой линейной скоростью кровотока, преимущественно за счет систолической составляющей.

    В зависимости от увеличения показателей ЛСК выделяют 3 степени тяжести церебрального ангиоспазма:

    легкая степень – до 120 см/сек,

    средняя степень – до 200 см/сек,

    тяжелая степень – свыше 200 см/сек.

    Увеличение до 350 см/сек и выше приводит к остановке кровообращения в сосудах мозга.

    В 1988 г. К.Ф. Линдегард предложил определять соотношение пиковой систолической скорости в средней мозговой артерии и одноименной внутренней сонной артерии. По мере нарастания степени церебрального ангиоспазма меняется соотношение скоростей между СМА и ВСА (в норме: V cma/Vвса = 1,7 ± 0,4). Этот показатель также позволяет судить о выраженности спазма СМА:

    легкая степень 2,1-3,0

    средняя степень 3,1- 6,0

    тяжелая более 6,0.

    Значение индекса Линдегарда в диапозоне от 2 до 3 может оцениваться как диагностически значимое у лиц с функциональным вазоспазмом.

    Допплерографический мониторинг этих показателей позволяет осуществлять раннюю диагностику ангиоспазма, когда ангиографически он может быть еще не обнаружен, и динамику его развития, что позволяет проводить более эффективное лечение.

    Пороговое значение пиковой систолической скорости кровотока для ангиоспазма в ПМА по данным литературы составляет 130 см/c, в ЗМА – 110см/c. Для ОА разными авторами были предложены разные пороговые значения пиковой систолической скорости кровотока, которые варьировали от 75 до 110 см/c. Для диагностики ангиоспазма основной артерии берется соотношение пиковой систолической скорости ОА и ПА наэкстракраниальном уровне, значимое значение = 2 и более. В таблице 1. приведена дифференциальная диагностика стеноза, ангиоспазма и артериовенозной мальформации.

Общее периферическое сопротивление (ОПС) - это сопротивление току крови, присутствующее в сосудистой системе организма. Его можно понимать как количество силы, противодействующей сердцу по мере того, как оно перекачивает кровь в сосудистую систему. Хотя общее периферическое сопротивление играет важнейшую роль в определении кровяного давления, оно является исключительно показателем состояния сердечно-сосудистой системы и его не следует путать с давлением, оказываемым на стенки артерий, которое служит показателем кровяного давления.

Составляющие сосудистой системы

Сосудистая система, которая отвечает за ток крови от сердца и к сердцу, может быть подразделена на две составляющие: системное кровообращение (большой круг кровообращения) и легочную сосудистую систему (малый круг кровообращения). Легочная сосудистая система доставляет кровь к легким, где та обогащается кислородом, и от легких, а системное кровообращение отвечает за перенос этой крови к клеткам организма по артериям, и возвращение крови обратно к сердцу после кровоснабжения. Общее периферическое сопротивление влияет на работу этой системы и в итоге может в значительной степени воздействовать на кровоснабжение органов.

Общее периферическое сопротивление описывается посредством частного уравнения:

ОПС = изменение давления / сердечный выброс

Изменение давления - это разность среднего артериального давления и венозного давления. Среднее артериальное давление равняется диастолическому давлению плюс одна треть разницы между систолическим и диастолическим давлением. Венозное кровяное давление может быть измерено при помощи инвазивной процедуры с применением специальных инструментов, которая позволяет физически определять давление внутри вены. Сердечный выброс - это количество крови, перекачиваемой сердцем за одну минуту.

Факторы влияющие на компоненты уравнения ОПС

Существует ряд факторов, которые могут значительно влиять на компоненты уравнения ОПС, таким образом, изменяя значения самого общего периферического сопротивления. Эти факторы включают диаметр сосудов и динамику свойств крови. Диаметр кровеносных сосудов обратно пропорционален кровяному давлению, поэтому меньшие кровеносные сосуды повышают сопротивление, таким образом, повышая и ОПС. И наоборот, более крупные кровеносные сосуды соответствуют менее концентрированному объему частиц крови, оказывающих давления на стенки сосудов, что означает более низкое давление.

Гидродинамика крови

Гидродинамика крови также может существенно способствовать повышению или понижению общего периферического сопротивления. За этим стоит изменение уровней факторов свертывания и компонентов крови, которые способны менять ее вязкость. Как можно предположить, более вязкая кровь вызывает большее сопротивление кровотоку.

Менее вязкая кровь легче перемещается через сосудистую систему, что приводит к понижению сопротивления.

В качестве аналогии можно привести разницу в силе, необходимой для перемещения воды и патоки.

Термин «общее периферическое сопротивление сосудов» обозначает суммарное сопротивление артериол.

Од­нако изменения тонуса в различных отделах сердечно-сосудистой системы различны. В одних сосудистых областях может быть выраженная вазоконстрикция, в других - вазодилатация. Тем не менее ОПСС имеет важное значение для дифференциальной диагностики вида гемодинамических на­рушений.

Для того чтобы представить важность ОПСС в регуляции МОС, необходимо рассмотреть два крайних варианта - бесконечно большое ОПСС и отсутствие его току крови.

При большом ОПСС кровь не может протекать через сосудистую систему. В этих условиях даже при хорошей функции сердца кровоток прекращается. При некоторых патологических состояниях кровоток в тканях уменьшается в результате возрастания ОПСС. Прогрессирующее возрастание последнего ведет к снижению МОС.

При нуле­вом сопротивлении кровь могла бы свободно проходить из аорты в полые вены, а затем в правое сердце. В результате давление в правом предсердии стало бы равным давлению в аорте, что значительно облегчило бы выброс крови в артериальную систему, а МОС возрос бы в 5-6 раз и более.

Одна­ко в живом организме ОПСС никогда не может стать равным 0, как и бес­конечно большим.

В некоторых случаях ОПСС снижается (цирроз печени, септический шок). При его возрастании в 3 раза МОС может уменьшиться наполовину при тех же значениях давления в правом предсердии.



Похожие публикации