Исследование эластических свойств легких при дифференциальной диагностике легочных заболеваний. Эластические свойства легких и грудной клетки (Стенки мелких бронхов) Эластические свойства легких и стенок грудной полости


В нормальных условиях вентиляции дыхательные мышцы развивают усилия, которые направлены на преодоление эластических, или упругих, и вязких сопротивлений. Упругие и вязкие сопротивления в дыхательной системе постоянно формируют различные соотношения между давлением воздуха в воздухоносных путях и объемом легких, а также между давлением воздуха в воздухоносных путях и скоростью воздушного потока во время вдоха и выдоха.
Растяжимость легких (compliance, С) служит показателем эластических свойств системы внешнего дыхания. Величину растяжимости легких измеряют в виде зависимости давление - объем и рассчитывают по формуле: С - F/л Р, где С - растяжимость легких.
Нормальная величина растяжимости легких взрослого человека составляет около 200 мл* см вод. ст.-1. У детей показатель растяжимости легких значительно меньше, чем у взрослого человека.
Снижение растяжимости легких вызывают следующие факторы: повышение давления в сосудах легких или переполнение сосудов легких кровью; длительное отсутствие вентиляции легких или их отделов; нетренированность дыхательной функции; снижение упругих свойств ткани легких с возрастом.
Поверхностным натяжением жидкости называется сила, действующая в поперечном направлении на границу жидкости. Величина поверхностного натяжения определяется отношением этой силы к длине границы жидкости, единицей измерения в системе СИ является н/м. Поверхность альвеол покрыта тонким слоем воды. Молекулы поверхностного слоя воды с большой силой притягиваются друг к другу. Сила поверхностного натяжения тонкого слоя воды на поверхности альвеол всегда направлена на сжатие и спадение альвеол. Следовательно, поверхностное натяжение жидкости в альвеолах является еще одним очень важным фактором, влияющим на растяжимость легких. Причем сила поверхностного натяжения альвеол очень значительная и может вызвать их полное спадение, что исключило бы всякую возможность вентиляции легких. Спадению альвеол препятствует антиателектатический фактор, или сурфактант. В легких альвеолярные секреторные клетки, входящие в состав аэрогематического барьера, содержат осмиофильные пластинчатые тельца, которые выбрасываются в альвеолы и превращаются в поверхностно-активное вещество - сурфактант. Синтез и замена сурфактанта происходит довольно быстро, поэтому нарушение кровотока в легких может снизить его запасы и увеличить поверхностное натяжение жидкости в альвеолах, что ведет к их ателектазу, или спадению. Недостаточная функция сурфактанта приводит к расстройствам дыхания, нередко вызывающим смерть.
В легких сурфактант выполняет следующие функции: снижает поверхностное натяжение альвеол; увеличивает растяжимость легких; обеспечивает стабильность легочных альвеол, препятствуя их спадению и появлению ателектаза; препятствует транссудации (выходу) жидкости на поверхность альвеол из плазмы капилляров легкого.

Легкие обладают рядом особенностей структурной организации, обеспечивающих их эластические свойства. Опорный каркас легких, начиная от главных бронхов и заканчивая альвеолами, состоит из соединительной ткани, включающей коллагеновые, ретикулярные и эластические волокна. Пучки этих волокон, подобно пружине, могут растягиваться и сжиматься . Механические свойства коллагеновых и эластических волокон не одинаковы: длина коллагеновых волокон при растяжении увеличивается всего на 2%, но зато очень велика их прочность на разрыв. Эластические волокна, наоборот, обладают очень высокой растяжимостью - до 130 %. В паренхиме легких соотношение коллаген /эластин равно 2.5/1, а в париетальной плевре - 10/1, следовательно, растяжимость легких значительно выше.

Вторым компонентом, способным сокращаться и расслабляться являются клетки гладкой мускулатуры, которые расположены по ходу дыхательных путей, в основании у входа в альвеолы, в плевре.

Третьим компонентом, вносящим свой вклад в эластичность легких, служат клетки фибробластического ряда, содержащие пучки фибрилл, богатые сократительными белками и способные к сокращению.

Соединительнотканный каркас, или строма, легких выполняет несколько функций: опорную, амортизационную, трофическую, коммуникационную. Основной принцип организации опорного каркаса - его непрерывность и структурная взаимосвязанность, от воздухоносных путей до висцеральной плевры. В связи с этим, при изменении внутриплеврального давления силы тяги передаются с париетальной на висцеральную плевру и далее на легкие, в воротах которых соединительнотканные образования плевры зафиксированы.

Таким образом, легкие содержат структуры, которые, с одной стороны, эластичны и могут растягиваться, а с другой - обладают ярко выраженной способностью к ретракции (будем называть это свойство ретракцией, для того, чтобы отличать этот пассивный процесс от активного сокращения). Во время вдоха легкие подвергаются растяжению под действием сил сокращения дыхательной мускулатуры (размер грудной клетки увеличивается). Когда эти силы прекращают действовать, легкие благодаря своим упругим свойствам возвращаются в первоначальное состояние. Чем больше увеличивается объем легких во время вдоха, тем сильнее они растягиваются и тем больше накапливается механической энергии для последующей ретракции. Эластические свойства легких характеризуются двумя основными параметрами: 1) растяжимостью и 2) эластическим сопротивлением - это та сила, которая препятствует растяжению.

Легочный сурфактант

Если полностью удалить из легких воздух и заменить его физиологическим раствором, то окажется, что способность к растяжению у легких значительно повышается. Это объясняется тем, что растяжению легких в норме препятствуют силы поверхностного натяжения, возникающие в легком на границе жидкость - газ.

Пленка жидкости, выстилающая внутреннюю поверхность альвеол, содержит высокомолекулярное вещество, понижающее поверхностное натяжение . Это вещество называется сурфактант и синтезируется альвеолоцитами II типа. Сурфактант имеет сложную белково-липидную структуру и представляет собой межфазную пленку на границе воздух - жидкий слой. Физиологическая роль легочного сурфактанта обусловлена тем, что эта пленка значительно снижает поверхностное натяжение, вызванное жидкостью. Поэтому сурфактант обеспечивает во-первых, повышение растяжимости легких и уменьшении работы, совершаемой во время вдоха и, во-вторых, обеспечивает стабильности альвеол препятствуя их слипанию. Регулирующее действие сурфактанта в обеспечении стабильности размеров альвеол состоит в том, что чем меньше становятся размеры альвеол, тем больше снижается поверхностное натяжение под влиянием сурфактанта. Без этого эффекта при уменьшении объема легких самые мелкие альвеолы должны были бы спадаться (ателектаз).

Синтез и замена поверхностно-активного вещества - сурфактанта происходит довольно быстро, поэтому нарушение кровотока в легких, воспаление и отеки, курение, острая кислородная недостаточность (гипоксия) или избыток кислорода (гипероксия), а также различные токсические вещества, в том числе некоторые фармакологические препараты (жирорастворимые анестетики), могут снизить его запасы и увеличить поверхностное натяжение жидкости в альвеолах. Потеря сурфактанта приводит к «жестким» (малоподвижным, плохо растяжимым) легким с наличием зон ателектазов.

Кроме действия сурфактанта стабильность альвеол в значительной степени обусловлена и структурными особенностями паренхимы легких. Каждая альвеола (кроме прилежащих к висцеральной плевре) окружена другими альвеолами. В такой эластической системе при уменьшении объема какой-то группы альвеол, окружающая их паренхима будет подвергаться растяжению, и препятствовать спадению соседних альвеол. Эту поддержку окружающей паренхимы называют «взаимосвязью». Взаимосвязь наряду с сурфактантом играет большую роль в предотвращении ателектазов и открытии ранее закрытых, по каким то причинам, участков легких. Кроме того, такая «взаимосвязь» поддерживает низкое сопротивление внутрилегочных сосудов и стабильность их просвета, просто растягивая их снаружи.

Транспульмональное давление

Стенки грудной клетки и поверхность легких покрыты тонкой серозной оболочкой. Между листками висцеральной и париетальной плевры имеется узкая (5 - 10 мкм) и герметичная щель, заполненная серозной жидкостью, по составу сходной с лимфой. В момент первого вдоха новорожденного легкие расправляются и остаются в таком состоянии всю оставшуюся жизнь. Если вспомнить о свойствах эластического каркаса легких, то становится ясно, что растянутые легкие постоянно стремятся уменьшить свой размер за счет способности эластических волокон к ретракции. Эта сила эластической тяги легких постоянно «оттягивает» легкие от грудной клетки, поэтому давление в плевральной полости всегда немного ниже, чем давление в альвеолах. Эту разницу давлений можно выявить, если, как видно на рисунке 3, ввести в плевральную полость канюлю, так чтобы ее кончик находился в плевральной полости. Соединив эту канюлю с манометром, мы можем убедиться в том, что у человека в состоянии покоя в конце выдоха внутриплевральное давление примерно на 3-4 мм рт. столба (5см. водного столба) ниже атмосферного.

Внутриплевральное давление ниже давления в альвеолах на величину эластической тяги легких:

Р плевральное = Р альвеолярное - Р эластической тяги легких

Следовательно, между внутренней поверхностью альвеол и плевральной полостью существует разность давлений, причем эта разность всегда в пользу альвеолярного пространства. Разницу между давлением в альвеолах и давлением в плевральной полости называют транспульмональным давлением.

Р транспульмональное = Р альвеолярное - Р плевральное.

Транспульмональное давление это тот градиент давлений, который поддерживает легкие в расправленном состоянии (давление «изнутри» выше давления «снаружи»). Таким образом, сила транспульмонального давления направлена в одну сторону с влиянием сурфактанта и противодействует эластической тяге легкого и поверхностному натяжению водной пленки. На схеме представлено взаимодействие сил, которые обеспечивают расправленное состояние легких, следовательно возможность легких растягиваться и обеспечивать поступление воздуха в альвеолярное пространство.

Плевральное давление часто называют отрицательным лишь потому, что оно ниже атмосферного. Плевральное давление можно считать отрицательным, если атмосферное давление принять за 0. На самом деле это давление положительное и зависит от атмосферного давления.

Если атмосферное давление сегодня равно 747 мм рт. ст., то плевральное давление к концу спокойного выдоха будет равно 747 - 3 = 744 мм рт. ст. Таким образом, транспульмональное давление равно 747 – 744 = 3 мм рт. ст.

Рассмотрим, каким образом изменяется альвеолярное и плевральное давление во время дыхания. Схема и рисунки 3А и Б иллюстрируют изменения давления во время вдоха и выдоха.

Перед вдохом давление в альвеолах равно атмосферному, движения воздуха нет. Стрелка - это эластическая тяга легкого, которая создает в плевральной полости давление ниже атмосферного. Транспульмональное давление поддерживает легкие в расправленном состоянии.
Во время вдоха объем грудной клетки увеличивается, легочная ткань растягивается. Объем легких увеличивается, давление в альвеолах становится ниже атмосферного, и воздух поступает в легкие. Увеличение размеров грудной клетки приводит к еще большему уменьшению плеврального давления, потому что плевральная полость растягивается в двух направлениях - две стрелки - увеличение размеров грудной клетки и более сильная тяга эластики легких во время их растяжения. Таким образом, транспульмональная разница давлений не только сохраняется, ни и немного увеличивается, облегчает растяжение легких.
Во время пассивного выдоха (расслабление межреберных мышц и диафрагмы) увеличение плеврального давления и ретракция эластики легких обеспечивают движение воздуха из альвеол в атмосферу.
На этой схеме приведены давления в альвеолах и плевральной полости во время активноговыдоха. При сокращении внутренних межреберных мышц уменьшаются размеры грудной клетки и объем легких, происходит повышение альвеолярного давления и осуществляется выдох. Давление в плевральной полости может стать даже выше атмосферного, благодаря сокращению экспираторных мышц, кроме того, уменьшается эластическая тяга легких.

Легко убедиться в том, что транспульмональная разница давлений совершенно необходима для нормального дыхания: стоит только нарушить герметичность плевральной полости. Если атмосферный воздух попадет в плевральную полость, то давление внутри легких и плевральной полости окажутся одинаковыми, легкие при этом спадаются. Сообщение плевральной полости с внешней средой в результате нарушения герметичности грудной клетки носит название пневмоторакса . При пневмотораксе выравниваются внутриплевральное и атмосферное давления, что вызывает спадение легкого и делает невозможной его вентиляцию при дыхательных движениях грудной клетки и диафрагмы. Если при одностороннем пневмотораксе пациент может существовать за счет воздухообмена через сохранившееся легкое, то при двустороннем пневмотораксе неминуемо наступает смерть. Кроме травматического пневмоторакса существует лечебный пневмоторакс, при котором в плевральную полость вводится строго определенное количество воздуха. Лечебный пневмоторакс применяется с целью ограничения функции больного легкого, например при туберкулезе легкого, абсцессах в легком и т.д.

Рисунок 3А. Плевральное давление во время дыхания

Рисунок 3Б. Изменение внутрилегочного и внутриплеврального давления во время дыхания

Механизмы изменения объема легких при дыхании можно продемонстрировать с помощью модели Дондерса (рис. 4), на которой с помощью двух манометров можно проследить за изменением давления и в легких, и в плевральной полости.

Если отсосать воздух из колокола, то легкие расправятся, т.к. в плевральной полости давление станет ниже внутрилегочного, появится разница давлений между внутрилегочным пространством и плевральной полостью – транспульмональное давление.

Теперь можно попробовать снизить давление в легких, оттягивая эластическую мембрану вниз и имитируя сокращение диафрагмы и увеличение объема грудной клетки. При этом уменьшится и внутриплевральное давление, что будет видно по изменению уровня жидкости в манометре. Такие изменения внутрилегочного и плеврального давлений характерны для фазы вдоха.

Рисунок 4. Модель Дондерса

Легочные объемы и емкости

Для функциональной характеристики дыхания принято использовать различные легочные объемы и емкости. Легочные объемы подразделяются на статические и динамические. Первые измеряют при завершенных дыхательных движениях. Вторые измеряют при проведении дыхательных движений и с ограничением времени на их выполнение. Емкость включает в себя несколько объемов.

Объем воздуха в легких и дыхательных путях зависит от следующих показателей: 1) антропометрических индивидуальных характеристик человека и строения дыхательной системы; 2) свойств легочной ткани; 3) поверхностного натяжения альвеол; 4) силы, развиваемой дыхательными мышцами.

Дыхательный объем (ДО) - объем воздуха, который вдыхает и выдыхает человек во время спокойного дыхания (рис. 5). У взрослого человека ДО составляет примерно 500 мл. Величина ДО зависит от условий измерения (покой, нагрузка, положение тела). ДО рас­считывают как среднюю величину после измерения примерно шести спокойных дыхательных движений.

Резервный объем вдоха (РО вд) - максимальный объем воздуха, который способен вдохнуть испытуемый после спокойного вдоха. Величина РО вд составляет 1,5-1,8 л.

Резервный объем выдоха (РО выд )-максимальный объем воздуха, который человек дополнительно может выдохнуть после спокойного выдоха. Величина РО выдоха ниже в горизонтальном поло­жении, чем в вертикальном, уменьшается при ожирении. Она равна в среднем 1,0-1,4 л.

Остаточный объем (ОО) - объем воздуха, который остается в легких после максимального выдоха. Величина остаточного объема равна 1,0-1,5 л.

Исследование динамических легочных объемов представляет на­учный и клинический интерес, и их описание выходит за рамки курса нормальной физиологии,

Легочные емкости . Жизненная емкость легких (ЖЕЛ) включает в себя дыхательный объем, резервный объем вдоха, резервный объем выдоха. У мужчин среднего возраста ЖЕЛ варьирует в пределах 3,5-5,0 л и более. Для женщин типичны более низкие величины (3,0-4,0 л). В зависимости от методики измерения ЖЕЛ различают ЖЕЛ вдоха, когда после полного выдоха производится максимально глубокий вдох и ЖЕЛ выдоха, когда после полного вдоха производится максимальный выдох.

Емкость вдоха (Е вд ) равна сумме дыхательного объема и резервного объема вдоха. У человека Е вд составляет в среднем 2,0-2.3 л.

Рисунок 5. Легочные объемы и емкости

Функциональная остаточная емкость (ФОЕ) - объем воздуха в легких после спокойного выдоха. ФОЕ является суммой резервного объема выдоха и остаточного объема. ФОЕ измеряется методами газовой дилюции, или «разведения газов» и плетизмографически. На величину ФОЕ существенно влияет уровень физической активности человека и положение тела: ФОЕ меньше в горизонтальном положении тела, чем в положении сидя или стоя. ФОЕ уменьшается при ожирении вследствие уменьшения общей растяжимости грудной клетки.

Общая емкость легких (ОЕЛ) - объем воздуха в легких по окончании полного вдоха. ОЕЛ рассчитывают двумя способами:

ОЕЛ = 00 + ЖЕЛ или ОЕЛ = ФОЕ + Евд. ОЕЛ может быть измерена с помощью плетизмографии или методом газовой дилюции.

Измерение легочных объемов и емкостей имеет клиническое значение при исследовании функции системы внешнего дыхания у здоровых людей и при диагностике заболевания легких.

Минутный объем дыхания

Одной из основных характеристик внешнего дыхания является минутный объем дыхания (МОД). Вентиляция легких определяется объемом воздуха вдыхаемого или выдыхаемого в единицу времени. МОД – это произведение дыхательного объема на частоту дыхательных циклов . В норме, в покое ДО равен 500 мл, частота дыхательных циклов – 12 – 16 в минуту, отсюда МОД равен 6 - 7 л/мин. Максимальная вентиляция легких – это объем воздуха, который проходит через легкие за 1 минуту во время максимальных по частоте и глубине дыхательных движений.

Альвеолярная вентиляция

Итак, внешнее дыхание, или вентиляция легких обеспечивает поступление в легкие примерно 500 мл воздуха во время каждого вдоха (ДО). Насыщение крови кислородом и удаление углекислого газа происходит при контакте крови легочных капилляров с воздухом, содержащимся в альвеолах. Альвеолярный воздух – это внутренняя газовая среда организма млекопитающих и человека. Ее параметры – содержание кислорода и углекислого газа – постоянны. Количество альвеолярного воздуха примерно соответствует функциональной остаточной емкости легких – количеству воздуха, которое остается в легких после спокойного выдоха, и в норме равно 2500 мл. Именно этот альвеолярный воздух обновляется поступающим по дыхательным путям атмосферным воздухом. Следует иметь в виду, что в легочном газообмене участвует не весь вдыхаемый воздух, а лишь та его часть, которая достигает альвеол. Поэтому для оценки эффективности легочного газообмена важна не
столько легочная, сколько альвеолярная вентиляция.

Как известно, часть дыхательного объема не участвует в газообмене, заполняя анатомически мертвое пространство дыхательных путей – примерно 140 – 150 мл.

Кроме того, есть альвеолы, которые в данный момент вентилируются, но не снабжаются кровью. Эта часть альвеол является альвеолярным мертвым пространством. Сумма анатомического и альвеолярного мертвых пространств называется функциональным, или физиологическим мертвым пространством. Примерно 1/3 дыхательного объема приходится на вентиляцию мертвого пространства, заполненного воздухом, который непосредственно не участвует в газообмене и лишь перемещается в просвете воздухоносных путей при вдохе и выдохе. Следовательно, вентиляция альвеолярных пространств – альвеолярная вентиляция – представляет собой легочную вентиляцию за вычетом вентиляции мертвого пространства. В норме альвеолярная вентиляция составляет 70 - 75 % величины МОД.

Расчет альвеолярной вентиляции проводится по формуле: МАВ = (ДО - МП) ´ ЧД, где МАВ - минутная альвеолярная вентиляция, ДО - дыхательный объем, МП - объем мертвого пространства, ЧД - частота дыхания.

Рисунок 6. Соотношение МОД и альвеолярной вентиляции

Используем эти данные для расчета еще одной величины, характеризующей альвеолярную вентиляцию - коэффициент вентиляции альвеол. Этот коэффициент показывает, какая часть альвеолярного воздуха обновляется при каждом вдохе.В альвеолах к концу спокойного выдоха находится около 2500 мл воздуха (ФОЕ), во время вдоха в альвеолы поступает 350 мл воздуха, следовательно, обновляется лишь 1/7 часть альвеолярного воздуха (2500/350 = 7/1).

Поскольку стенки мелких бронхов обладают большой податливостью, их просвет поддерживается напряжением эластических структур стромы легких, радиально растягивающих бронхи. При максимальном вдохе эластические структуры легких предельно напряжены.

По мере выдоха их напряжение постепенно ослабевает, в результате чего в определенный момент выдоха происходит сдавление бронхов и перекрытие их просвета. ООЛ и представляет собою тот объем легких, при котором экспираторное усилие перекрывает мелкие бронхи и препятствует дальнейшему опорожнению легких.

Чем беднее эластический каркас легких, тем при меньшем объеме выдоха спадаются бронхи. Этим и объясняется закономерное увеличение ООЛ у лиц пожилого возраста и особенно заметное его увеличение при эмфиземе легких.

Увеличение ООЛ свойственно также и больным с нарушением бронхиальной проходимости. Этому способствует увеличение внутригрудного давления на выдохе, необходимое для продвижения воздуха по суженному бронхиальному дереву.

Одновременно увеличивается и ФОЕ, что в известной мере является компенсаторной реакцией, так как чем больше уровень спокойного дыхания смещен в инспираторную сторону, тем сильнее растягиваются бронхи и тем больше силы эластической отдачи легких, направленные на преодоление повышенного бронхиального сопротивления.

Как показали специальные исследования (А. П. Зильбер, 1974), некоторые бронхи спадаются раньше, чем будет достигнут уровень максимального выдоха. Объем легких, при котором начинают спадаться бронхи, так называемый объем закрытия, и в норме больше ООЛ, у больных он может быть больше ФОЕ. В этих случаях даже при спокойном дыхании в некоторых зонах легких вентиляция нарушается. Смещение уровня дыхания в инспиратор-ную сторону, т. е. увеличение ФОЕ, в такой ситуации оказывается еще более целесообразным.

«Руководство по пульмонологии», Н.В.Путов

В.Ю. Мишин

Одной из основных задач клинического обследования больного является определение функционального состояния его дыхательной системы , имеющего большое значение при решении вопросов лечения, прогноза, а также оценки трудоспособности.

Современные функциональные методы абсолютно необходимы для оценки отдельных синдромов нарушения функции внешнего дыхания (ФВД) . Они позволяют определять такие характеристики респираторной функции, как бронхиальная проводимость, воздухонаполненность, эластические свойства, диффузионная способность и респираторная мышечная функция.

Функциональные пробы дают возможность выявлять ранние формы дыхательной недостаточности, многие из которых являются обратимыми. Определение характера ранних функциональных нарушений позволяет подобрать наиболее рациональные терапевтические мероприятия для их устранения.

Основные методы исследования ФВД :

  • спирометрия ;
  • пневмотахометрия ;
  • исследование легочной диффузии ;
  • измерение растяжимости легких ;
  • непрямая калориметрия .

Первые два метода считаются скрининговыми и обязательны для использования во всех лечебных учреждениях, осуществляющих наблюдение, лечение и реабилитацию легочных больных. Такие методы, как бодиплетизмография, исследование диффузионной способности и растяжимости легких являются более углубленными и дорогостоящими методами. Что же касается эргоспирометрии и непрямой калориметрии, то это также довольно сложные методы, которые применяют по индивидуальным показаниям.

Уменьшение просвета бронхиального дерева, проявляющееся ограничением воздушного потока - наиболее важное функциональное проявление легочных заболеваний. Общепринятые методы регистрации бронхиальной обструкции - спирометрия и пневмотахометрия с выполнением экспираторного маневра.

Они позволяют выявить рестриктивные и обструктивные расстройства вентиляции, определить диффузионную способность легких, характеризовать переход газов из альвеолярного воздуха в кровь легочных капилляров. В настоящее время исследование выполняют на приборах с программным обеспечением, проводящим автоматизированные расчеты с учетом должных величин.

Жизненная емкость легких (ЖЕЛ) слагается из дыхательного, дополнительного и резервного объемов. Дыхательный объем - воздух, вдыхаемый и выдыхаемый за один обычный (спокойный) дыхательный цикл. Резервный объем вдоха - дополнительный объем воздуха, который можно с усилием вдохнуть после обычного (спокойного) вдоха. Резервный объем выдоха - объем воздуха, который можно вывести из легких после обычного (спокойного) выдоха.

Определение ЖЕЛ имеет существенное значение в исследовании дыхательной функции. Общепринятой границей снижения ЖЕЛ является показатель ниже 80% от должной величины. Уменьшение ЖЕЛ может быть вызвано различными причинами - уменьшением объема функционирующей ткани вследствие воспаления, фиброзной трансформации, ателектаза, застоя, резекции ткани, деформации или травмы грудной клетки, спаечных процессов.

Причиной снижения ЖЕЛ могут быть и обструктивные изменения при бронхиальной астме, эмфиземе, однако более выраженное снижение ЖЕЛ характерно для ограничительных (рестриктивных) процессов. У здорового человека при исследовании ЖЕЛ грудная клетка после максимального вдоха, а затем выдоха возвращается к уровню функциональной остаточной емкости.

У больных с обструктивными нарушениями функции легких при исследовании ЖЕЛ следует медленное ступенчатое возвращение после нескольких дыхательных циклов к уровню спокойного выдоха (симптом «воздушной ловушки» ). Возникающая задержка воздуха связана со снижение эластичности легочной ткани и ухудшением бронхиальной проходимости.

Форсированная жизненная емкость (ФЖЕЛ) , или объем форсированного выдоха (ОФВ), представляет собой объем воздуха, выдыхаемый как можно резче после максимального вдоха. Величина ФЖЕЛ соответствует в норме значениям ЖЕЛ при обычном дыхании.

Основным критерием, позволяющим говорить о том, что у больного имеется хроническое ограничение воздушного потока (бронхиальная обструкция), является снижение ОФВ за первую секунду (ОФВ,) до уровня, составляющего менее 70% от должных величин. Обладая высокой воспроизводимостью при правильном выполнении маневра, этот показатель позволяет документально зарегистрировать у пациента наличие обструкции.

По степени тяжести обструктивные нарушения функции в зависимости от ОФВ, подразделяют на легкие (при показателе 70% и более от должной), средней тяжести (при 50-60% от должной) и тяжелые (менее 50% от должной). Установлено ежегодное уменьшение ОФВ, в пределах 30 мл у здоровых лиц и более 50 мл у больных хроническими обструктивными заболеваниями легких.

Проба Тиффно - рассчитывают по отношению ОФВ,/ФЖЕЛ и ОФВ/ЖЕЛ, отражающих состояние проходимости дыхательных путей в целом без указания на уровень обструкции. Наиболее чувствительным и ранним признаком оценки ограничения воздушного потока служит показатель ОФВ/ФЖЕЛ. Он является определяющим признаком хронической обструктивной болезни на всех ее стадиях. Снижение ОФВ/ФЖЕЛ ниже 70% свидетельствует об обструктивных нарушениях в бронхах.

Оценивают также среднюю объемную скорость воздушного потока на отрезке 25-75% кривой ФЖЕЛ и по степени ее наклона анализируют состояние проходимости преимущественно мелких бронхов.

Все шире в клинической практике используют тесты, выявляющие функциональные нарушения до появления клинических симптомов. Это кривая «поток - объем», альвеолоартериальный градиент по кислороду и закрытый объем.

Очень сложна ранняя диагностика преимущественного поражения мелких бронхов диаметром менее 2-3 мм, характерного для дебюта хронической обструктивной болезни легких. Оно очень долго не выявляется при спирометрии и бодиплетизмографическом измерении сопротивления дыхательных путей.

Кривая «поток-объем» форсированного выдоха позволяет выявить уровень обструкции. Диагностика уровня нарушения бронхиальной проходимости основывается на сжатии дыхательных путей при проведении форсированного выдоха. Спадению бронхов препятствует эластичность легочной ткани. При выдохе одновременно с уменьшением объема снижается эластичность ткани, что способствует коллапсу бронхов. При уменьшении эластичности спадение бронхов происходит раньше.

При анализе кривой форсированного выдоха фиксируют мгновенную скорость на уровне пика - пиковую скорость выдоха (ПСВ), а также при выдохе 75%, 50%, 25% от выдыхаемой ЖЕЛ - максимальную скорость выдоха (МСВ 75, МСВ 50, МСВ 25). Показатели ПСВ и МСВ 75 отражают проходимость крупных, а МСВ 50 и МСВ 25 - мелких бронхов.

Другой метод, который позволяет зарегистрировать поражение мелких бронхов, - определение внутригрудного компрессионного объема (Vcomp). Последний является той частью внутрилегочного объема воздуха, которая вследствие нарушения проводимости мелких бронхов во время форсированного экспираторного маневра подвергается компрессии.

Vcomp определяется как разница между изменением легочного объема и интегрированным ротовым потоком. Эти величины следует считать важным показателем проходимости дыхательных путей. Его следует использовать для ранней диагностики хронических бронхитов, в частности у курящих, не имеющих клинических признаков хронического бронхита. Изменение этих величин может указывать на поражение мелких дыхательных путей, оно также является фактором, свидетельствующим о необходимости терапевтических и профилактических мероприятий.

  • Снижение ЖЕЛ, ОФВ, MBJT в пределах 79-60% от должных величин оценивают как умеренное; 59-30% - значительное; менее 30% - резкое.
  • Снижение ПСВ, МСВ 75, МСВ 50 и МСВ 25 в пределах 59-40% от должных величин оценивают как умеренное; 39-20% - значительное; менее 20 - резкое.

Возникающее у больных хроническим бронхитом ограничение экспираторного воздушного потока приводит к замедлению выведения воздуха из легких во время выдоха, что сопровождается увеличением ФОЕ. В итоге возникает динамическая гиперинфляция легких и изменение диафрагмы в виде укорочения ее длины, уплощения формы, снижения силы сокращения. В связи с гиперинфляцией легких изменяется и эластическая отдача, возникает положительное давление в конце выдоха и повышается работа дыхательных мышц.

Изучение бронхиальной проходимости с помощью фармакологических проб значительно расширяет возможности спирографии. Определение данных легочной вентиляции до и после ингаляции бронхолитического препарата позволяет выявить скрытый бронхоспазм, дифференцировать функциональные и органические нарушения. С другой стороны, применение бронхоконстрикторов (ацетилхолин) позволяет изучить реактивность бронхиального дерева.

Для решения вопроса об обратимости обструкции применяется проба с бронхолитическими препаратами , вводимыми ингаляционно. При этом сравнивают преимущественно ОФВ. Другие показатели кривой поток-объем менее воспроизводимы, что отражается на точности результатов. Бронходилатационный ответ на препарат зависит от его фармакологической группы, пути введения и техники ингаляции.

Факторами, влияющими на бронходилатационный ответ, также являются назначаемая доза; время, прошедшее после ингаляции; бронхиальная лабильность во время исследования: состояние легочной функции; воспроизводимость сравниваемых показателей; погрешности исследования. В качестве бронходилатационных агентов при проведении тестов у взрослых рекомендуются:

  • 32-агонисты короткого действия (сальбутамол - до 800 мкг, тербуталин - до 1000 мкг) с измерением бронходилатационного ответа через 15 мин;
  • антихолинергические препараты (ипратропиума бромид до 80 мкг) с измерением бронходилатационного ответа через 30-45 мин.

Возможно проведение бронходилатационных тестов с использованием небулайзеров. При их осуществлении назначают более высокие дозы препаратов: повторные исследования следует проводить через 15 мин после ингаляции 2,5-5 мг сальбутамола или 5-10 мг тербуталина, или же через 30 мин после ингаляции 500 мкг ипратропиума бромида.

Во избежание искажения результатов и для правильного выполнения бронходилатационного теста необходимо отменить проводимую терапию в соответствии с фармакокинетическими свойствами принимаемого препарата (Р2-агонисты короткого действия - за 6 ч до начала теста, длительно действующие 32-агонисты- за 12 ч, пролонгированные теофиллины - за 24 ч).

Результат пробы оценивают по степени прироста показателя ОФВ, в процентах к исходной величине. При увеличении ОФВ, на 15% и более проба считается положительной и оценивается как обратимая. Бронхиальная обструкция считается хронической, если она регистрируется не менее трех раз в течение 1 года, несмотря на проводимую терапию.

Исследование легочной вентиляции . Вентиляция представляет собой циклический процесс вдоха и выдоха, обеспечивающий поступление воздуха из атмосферы, содержащего около 21% 02 и выведение со2 из легких.

Характер дыхания при заболеваниях легких может различаться. При обструктивных болезнях возникает более глубокое дыхание, при рестриктивном поражении - чаще поверхностное и учащенное. В первом случае из-за нарушения проходимости бронхов эффективна медленная скорость прохождения воздуха по воздухоносным путям, чтобы избежать турбулентности потока и спадения стенки мелких бронхов. Углубленное дыхание усиливает также эластическую отдачу.

При преобладании фиброзно-воспалительных изменений, сопровождающихся снижением растяжимости легочной ткани, мышечные затраты на дыхание меньше при частом и неглубоком дыхании.

Общая вентиляция , или минутный объем дыхания (МОД) , определяется спирографически при умножении дыхательного объема (ДО) на частоту дыхания. Может быть определена также и максимальная вентиляция легких (МВЛ), когда больной дышит часто и глубоко. Эта величина, также как и ОФВ, отражает вентиляционную способность легких.

При патологии и физической нагрузке величина МОД увеличивается, что связано с необходимостью увеличения потребления 02. При поражении легких снижается величина МВЛ. Разница между МВД и МОД характеризует резерв дыхания. По спирограмме можно рассчитать и количество потребляемого кислорода (в норме 250 мл/мин).

Исследование альвеолярной вентиляции . Эффективность вентиляции можно оценить по величине альвеолярной вентиляции. Альвеолярная вентиляция - объем воздуха, поступающий при дыхании в альвеолы в единицу времени, обычно рассчитывают за 1 мин. Объем альвеолярной вентиляции равен дыхательному объему с вычетом физиологически мертвого пространства.

Физиологически мертвое пространство включает анатомически мертвое пространство и объем некровоснабжаемых альвеол и объем альвеол, в которых процесс вентиляции превышает объем кровотока. Величина альвеолярной вентиляции 4-4,45 л/мин, или 60- 70% от общей вентиляции. Развивающаяся при патологическом состоянии гиповентиляция приводит к гипоксемии, гиперкапнии и дыхательному ацидозу.

Гиповентиляция - альвеолярная вентиляция, недостаточная по отношению к уровню метаболизма. Гиповентиляция ведет к повышению РС02 в альвеолярном воздухе и увеличению РС02 в артериальной крови (гиперкапния). Гиповентиляция может возникнуть при снижении ЧД и ДО, а также при увеличении мертвого пространства.

Компенсаторно развиваются сдвиги, характерные для дыхательного ацидоза, - повышаются стандартный бикарбонат (SB), буферные основания (ВВ), снижается дефицит буферных оснований (BE), который становится отрицательным. Р02 в альвеолярной крови при гиповентиляции падает.

Наиболее частые причины гиповентиляции - нарушение проходимости и увеличение мертвого пространства дыхательных путей, нарушение функции диафрагмы и межреберных мышц, нарушение центральной регуляции дыхания и периферической иннервации дыхательных мышц.

При неконтролируемой оксигенотерапии повышается РС02 в крови. В результате происходит торможение рефлекторного влияния гипоксемии на центральную регуляцию дыхания и устранение защитного действия гипервентиляции. Возникающее состояние относительной гиповентиляции способствует задержке СО2 и развитию дыхательного ацидоза. Увеличение секреции в воздухоносных путях может способствовать вентиляционной недостаточности, особенно при затруднении откашливания мокроты.

Исследование диффузии газов в легких . Измерение диффузионной способности у больных легочными заболеваниями обычно выполняется на втором этапе оценки ФВД после выполнения форсированных спирометрии или пневмотахометрии и определения структуры статических объемов.

Диффузионной способностью обозначают количество газа, проходящее в одну минуту через альвеолокапиллярную мембрану из расчета на I мм разности парциального давления этого газа на обе стороны мембраны.

Исследование диффузии применяется у больных для диагностики эмфиземы или фиброза легочной паренхимы. По способности обнаружения начальных патологических изменений легочной паренхимы данный метод сопоставим по чувствительности с КТ. Нарушением диффузии чаше сопровождаются легочные заболевания, однако может быть и изолированное нарушение, обозначаемое как «альвеолокапиллярный блок ».

При эмфиземе показатели диффузионной способности легких (DLCO) и ее отношения к альвеолярному объему (Va) снижены, главным образом, вследствие деструкции альвеолярно-капиллярной мембраны, уменьшающей эффективную площадь газообмена.

При рестриктивных легочных заболеваниях характерно значительное снижение DLCO. Отношение DLCO/Va может быть снижено в меньшей степени из-за одновременного значительного уменьшения объема легких. Снижение диффузии обычно сочетается с нарушением вентиляции и кровотока.

Диффузия может снижаться при уменьшении числа капилляров, участвующих в газообмене. С возрастом отмечается уменьшение количества легочных капилляров у больных саркоидозом, силикозом, эмфиземой, митральным стенозом, после пневмонэктомии.

Характерным для больных со сниженной диффузионной способностью является снижение Р02 при нагрузке и увеличение при вдыхании 02. На пути к гемоглобину молекулы кислорода диффундируют через альвеолы, межклеточную жидкость, эндотелий капилляров, плазму, мембрану эритроцитов, внутриэритроцитарную жидкость.

При утолщении и уплотнении этих тканей, накоплении внутри и внеклеточной жидкости процесс диффузии ухудшается. С02 обладает значительно лучшей растворимостью, чем 02, а его диффузионная способность в 20 раз выше по сравнению с последним.

Исследование диффузии проводят с помощью газов, хорошо растворяющихся в крови (С02 и 02). Величина диффузионной способности для С02 прямо пропорциональна количеству С02, перешедшему из альвеолярного газа в кровь (мл/мин) и обратно пропорциональна разнице между средним давлением С02 в альвеолах и капиллярах. В норме диффузионная способность колеблется от 10 до 30 мл/мин С02 на 1 мм рт.ст.

При проведении исследования больной вдыхает смесь с низким содержанием С02, задерживает дыхание на 10 с, в течение которых С02 диффундирует в кровь. При этом измеряется С02 в альвеолярном газе до и в конце задержки дыхания. Для расчетов определяется ФОЕ.

Исследование газов крови и кислотноосновного состояния (КОС) . Исследование газов крови и КОС артериальной крови является одним из основных методов определения состояния функции легких. Из показателей газового состава крови исследуют Ра02 и РаС02, из показателей КОС - рН и избыток оснований (BE).

Для исследования газов крови и КОС применяют микроанализаторы крови с измерением Р02 платиносеребряным электродом Кларка и РС02 - стеклянно-серебряным электродом. Исследуют артериальную и артериализованную капиллярную кровь; последняя берется из пальца или мочки уха. Кровь должна свободно изливаться и не содержать пузырьков воздуха.

За норму взята величина Р02 от 80 мм рт.ст. и выше. Уменьшение Р02 до 60 мм рт.ст. расценивают как небольшую гипоксемию до 50-60 мм рт.ст. - умеренную, ниже 50 мм рт.ст. - резкую.

Причиной гипоксемии могут быть следующие состояния: альвеолярная гиповентиляция, нарушение альвеолокапиллярной диффузии, анатомическое или паренхиматозное шунтирование, ускорение скорости кровотока в легочных капиллярах.

При гиповентиляции снижаются ДО или ЧД, увеличивается физиологически мертвое пространство. Возникающее снижение Р02, как правило, сочетается с задержкой С02. Гипоксемия, имеющая место при нарушении диффузии газов, усиливается при физической нагрузке, так как увеличивается скорость кровотока в капиллярах легких и соответственно уменьшается время контакта крови с альвеолярным газом.

Гипоксемия, вызванная нарушением диффузии, не сопровождается задержкой С02, так как скорость ее диффузии намного выше диффузии 02. Нередко низкое содержание С02 связано с сопутствующей гипервентиляцией. Гипоксемия, вызванная веноартериальными шунтами, не устраняется вдыханием высоких концентраций 02.

Альвеолоартериальная разница при этом исчезает или уменьшается при вдыхании 14% 02. Содержание 02 снижается при нагрузке. При нарушении вентиляционно-перфузионных соотношений гипоксемия исчезает при применении оксигенотерапии. При этом может возникать задержка С02 в связи с устранением гипервентиляции, которая имеет рефлекторное происхождение при наличии гипоксемии.

Вдыхание 02 в высоких концентрациях приводит к исчезновению альвеолоартериальной разницы. Гипоксемия, вызванная ускоренным прохождением крови в легочных капиллярах, имеет место при общем уменьшении кровотока в малом круге кровообращения. Показатели Р02 при этом существенно снижаются при физической нагрузке.

Чувствительность ткани к недостатку 02 определяется не только его показателями содержания в крови, но и состоянием кровотока. Возникновение повреждающего эффекта ткани, как правило, связано с сочетанием гипоксемии и одновременным изменением кровотока. При хорошем кровоснабжении ткани проявления гипоксемии менее выражены.

У больных с хронической легочной недостаточностью кровоток чаще повышен, что позволяет им сравнительно хорошо переносить гипоксемию. При остро возникающей дыхательной недостаточности и отсутствии усиления кровотока даже умеренная гипоксемия может представлять угрозу жизни больного.

Развитие гипоксемии на фоне анемии и повышенного обмена также представляет определенную опасность. Гипоксемия ухудшает кровоснабжение жизненно важных органов, течение стенокардии, инфаркта миокарда. Ткани имеют различную чувствительность к недостатку О2.

Так, скелетные мышцы способны извлекать его из артериальной крови при Р02 ниже 15-20 мм рт.ст.; клетки головного мозга и миокарда могут повреждаться, если Р02 снижается ниже 30 мм рт.ст. Неповрежденный миокард устойчив к гипоксемии, однако в ряде случаев возникают аритмии и явления снижения сократительной способности.

Определенное значение в развитии дыхательной недостаточности имеет состояние венозной крови: венозная гипоксемия и увеличение артериовенозной разницы по 02. У здоровых лиц величина Р02 в венозной крови составляет 40 мм рт.ст., артериовенозная разница - 40-55 мм рт.ст.

Повышение утилизации 02 тканями является признаком, указывающим на ухудшение условий обмена и кислородного снабжения.

Важным признаком дыхательной недостаточности является также гиперкапния . Она развивается при тяжелых легочных заболеваниях: эмфиземе, бронхиальной астме, хроническом бронхите, отеке легких, обструкции дыхательных путей, заболеваниях дыхательных мышц.

Гиперкапния может также возникнуть при поражениях ЦНС, действии на дыхательный центр наркотиков, поверхностном дыхании, когда снижается альвеолярная вентиляция нередко на фоне большой общей. Увеличению РС02 в крови способствуют неравномерная вентиляция и перфузия, увеличение физиологически мертвого пространства, интенсивная мышечная работа.

Гиперкапния возникает, когда РС02 превышает 45 мм рт.ст.; состояние гиперкапнии диагностируется при РС02 ниже 35 мм рт.ст.

Клинические признаки гиперкапнии проявляются головной болью ночью и утром, слабостью, сонливостью. При прогрессирующем увеличении РС02 появляются спутанное сознание, изменение психики, тремор. При нарастании РС02 до 70 и более мм рт.ст. возникают коматозное состояние, галлюцинации и судороги. Могут проявиться изменения со стороны глазного дна в виде полнокровия и извилистости сосудов сетчатки, кровоизлияний в сетчатку, отека соска зрительного нерва. Гиперкапния может вызвать отек мозга, артериальную гипертензию, нарушение ритма сердца вплоть до его остановки.

Накопление С02 в крови затрудняет также процесс оксигенации крови, что проявляется прогрессированием гипоксемии. Снижение рН артериальной крови ниже 7,35 расценивают как ацидоз; повышение 7,45 - как алкалоз . Дыхательный ацидоз диагностируют при повышении РС02 более 45 мм рт.ст., дыхательный алкалоз - при РС02 ниже 35 мм рт.ст.

Показателем метаболического ацидоза является снижение избытка оснований (BE), метаболического алкалоза - повышение BE.
В норме BE колеблется от -2,5 ммоль/л до +2,5. Величина рН крови зависит от соотношения гидрокарбоната (НС03) и угольной кислоты, что в норме составляет 20:1.

Давление, создаваемое эластической паренхимой легких, называется давлением эластической отдачи легких (Pэласт) и представляет собой разницу между давлением внутри альвеол (альвеолярным давлением, Pальв) и давлением внутри плевральной полости (плевральным давлением, Pплевр): Pэласт = Ральв - Рплевр. В основе измерения эластической отдачи легких лежат два принципа: 1) давление, необходимое для растяжения легких до определенного объема, равно давлению эластической отдачи при этом объеме; 2) в статических условиях при отсутствии потока и при открытой голосовой щели Ральв=0, а Pэласт= - Рплевр. Таким образом, для оценки давления эластической отдачи и статической растяжимости легких нужно измерить Рплевр при различных легочных объемах.

Поскольку пищевод проходит через плевральное пространство, разумно предположить, что внутрипищеводное давление позволяет вполне надежно оценить динамику изменения Рплевр. Это предположение действует до тех пор, пока нормально функционируют верхний и нижний пищеводные сфинктеры и отсутствует сдавление пищевода (например, за счет активного сокращения мышц пищевода или пассивного сдавления окружающими структурами средостения). Таким образом, у лиц без заболеваний пищевода, которые находятся в положении сидя или стоя, плевральное давление можно измерить косвенно - измеряя внутрипищеводное давление.

ИЗМЕРЕНИЕ

Пищеводное давление регистрируют с помощью катетера с маленьким баллончиком на конце. Внутрибаллонное давление отражает внутрипищеводное давление, которое, в свою очередь, отражает окружающее Рплевр. Эта методика приводит к некоторым искажениям, регистрируется более положительная величина давления за счет сдавления баллончика стенками пищевода. Для уменьшения искажения используют латексный баллончик 10 см длиной и 2,5 см в диаметре, с тонкими стенками (0,04 см), который содержит небольшой объем воздуха (200 - 400 мл).

Рплевр меняется в соответствии с вертикальным градиентом: наиболее отрицательное давление внизу, у основания грудной клетки. Обычно измеряют давление в нижней трети пищевода для того, чтобы определить давление, необходимое для растяжения большей части легких. Исследование проводят, вводя баллончик в пищеводно-желудочное соединение, которое легко определяется по положительному давлению, создаваемому при втяжении воздуха носом на вдохе, и затем вытягивают назад на 10 см.

РАСТЯЖИМОСТЬ ЛЕГКИХ

Когда баллончик установлен на нужном уровне, можно измерить соотношение между изменениями объема легких и Рплевр.

Статическая легочная растяжимость представляет собой наклон кривой давление - объем, полученной во время спадения легких от уровня ОЕЛ, и определяется стандартным протоколом. Следует сделать 3 максимально глубоких вдоха, что позволяет стандартизировать паттерн дыхания. На третьем вдохе пациент задерживает дыхание на уровне ОЕЛ на 3 - 5 с и затем делает медленный выдох, во время которого воздушный поток прерывается закрытием ротовой заслонки на 2 - 3 с на уровне каждого объема. Повторение этого маневра 4 - 5 раз дает достаточную информацию о взаимоотношении изменений объема легких и изменений Рэласт. Для построения кривой давление - объем необходимо измерять объем при определенном Рэласт. Это легко осуществимо при бодиплетизмографии. Другим, но менее точным способом, является метод разведения газов. В этом случае необходимо сделать предположение, что объемы легких были постоянными и не изменялись во времени.

Измерение растяжимости позволяет получить наибольшую информацию об упругости легких. Важно отметить, что растяжимость, соответствующая крутизне наклона кривой, зависит от исходного легочного объема. Обычно растяжимость определяют по углу наклона, начиная с объема, превышающего ФОЕ на 0,5 л. Однако в этом случае величина, выражающая легочную растяжимость, в большей степени находится под влиянием факторов, определяющих ФОЕ, чем просто под влиянием взаимосвязи между легочными объемами и давлением, растягивающим легкие. На практике часто вычисляют коэффициент ретракции (давление эластической отдачи легких на уровне ОЕЛ, деленное на ОЕЛ). Существуют должные значения как для растяжимости, так и для коэффициента ретракции, хотя высокая вариабельность этих показателей ограничивает их применение у конкретного больного.

Максимальную информацию об эластической отдаче легких можно получить, анализируя кривую давление - объем целиком . Такой график часто помогает понять причину снижения объема легких: слабость дыхательной мускулатуры, патология грудной клетки или поражение паренхимы легких. При мышечной слабости/патологии грудной клетки легочная растяжимость в норме, а при патологии паренхимы легких она снижается. Причину снижения растяжимости определить гораздо труднее: истинное повышение эластических свойств легочной ткани или уменьшение числа альвеол, соединяющихся с дыхательными путями?

Динамической легочной растяжимостью называют изменение объема легких относительно изменения давления при наличии воздушного потока. Давление измеряется во время дыхания, в моменты когда скорость потока равна нулю. При нормальном сопротивлении дыхательных путей растяжимость слабо зависит от частоты дыхания. При увеличении сопротивления - динамическая растяжимость может снизиться, прежде чем обычные исследования выявят отклонения от нормы. Изменения динамической растяжимости, зависящие от частоты дыхания, называются частотно-зависимой растяжимостью. Таким образом, при отсутствии изменений в общем Raw или ОФВ1 снижение динамической растяжимости легких позволяет заподозрить возможное сужение мелких периферических дыхательных путей .

КЛИНИЧЕСКОЕ ИСПОЛЬЗОВАНИЕ ПОКАЗАТЕЛЕЙ ПОТОК - ОБЪЕМ

ИСТОЧНИКИ ВАРИАБЕЛЬНОСТИ

Европейское сообщество стали и угля (ECCS) и Американское торакальное общество (ATS) опубликовали списки уравнений должных значений для спирометрии , а также рекомендации по интерпретации измерения функции легких, включая спирометрическое исследование и критерии достоверности бронходилатационной реакции при проведении фармакологических проб . При этом особое внимание уделяется необходимости тщательного лабораторного контроля за техническими и биологическими источниками вариабельности.

Биологическая вариабельность может быть обусловлена суточными колебаниями показателей, курением или воздействием других химических/физических агентов. Кроме того, состояние респираторной системы может измениться под воздействием самой процедуры измерения; например, глубокий вдох может вызвать бронходилатацию и изменение эластических свойств легкого. Вариабельность функциональных показателей у одного и того же пациента может быть обусловлена изменением активности патологического процесса (инфекция, контакт с профессиональными вредностями и аллергеном), влиянием поллютантов на лиц с гиперреактивностью дыхательных путей. Легочная функция может изменяться под воздействием препаратов, оказывающих влияние на просвет бронхов. Ошибки оператора могут быть техническими, например вследствие различий в методике проведения исследования, в расчетах и трактовке данных.

Биологическая вариабельность сводится к минимуму, если уделяется пристальное внимание времени и условиям проведения теста. Техническую вариабельность можно минимизировать путем регулярной калибровки, частой проверки работы оборудования, поддержанием его рабочего состояния, тщательной инструкцией пациента, допуском к работе только высококвалифицированного персонала, способного проводить исследование профессионально и в соответствии со стандартными протоколами.

НОРМАЛЬНЫЕ ВЕЛИЧИНЫ

При популяционных исследованиях было выявлено, что распределения ОФВ1 и ФЖЕЛ соответствуют нормальному распределению только в среднем возрастном диапазоне. Кроме того, распределения скоростных показателей и отношения ОФВ1/ФЖЕЛ не являются симметричными . Поэтому работы по разработке уравнений должных величин должны включать строгие определения верхних и нижних границ нормального диапазона или обеспечить информацию, позволяющую вычислить нижнюю границу . С помощью регрессионной модели можно вычислить нижнюю границу нормальных значений: для спирометрических показателей это значения ниже пятой процентили, а не - 1,64xSEE (где SEE - стандартная ошибка оценки, являющаяся критерием вариабельности данных относительно регрессионной линии) . Практика использования 80% от должных значений в качестве фиксированного значения для нижней границы нормальных значений ФЖЕЛ и ОФВ1 может быть приемлема у детей, но может приводить к существенным ошибкам при интерпретации функции легких у взрослых . Использование 70% в качестве нижней границы нормы для отношения ОФВ1/ФЖЕЛ приводит к значительному числу ложноположительных результатов у мужчин в возрасте старше 40 лет и у женщин старше 50 лет , так же к гипердиагностике ХОБЛ у пожилых лиц, никогда не куривших и не имеющих характерных клинических симптомов . Для скоростных показателей нижняя граница нормальных значений составляет 50 - 60% от должных значений. Совершенствуются оборудование и методы исследования, поэтому современные математические модели позволяют более точно оценить функцию легких. Для этого следует регулярно обновлять уравнения должных величин, например каждые 10 лет, также необходимо учитывать возможность применения более новых уравнений должных величин и оценивать правильность интерпретации при длительном наблюдении за пациентами .



Похожие публикации