Клеточный цикл. деление клеток. Жизненный цикл клетки: фазы, периоды. Жизненный цикл вируса в клетке хозяина Клеточный цикл жизни

Период жизни клетки от момента её рождения в результате деления материнской клетки до следующего деления или смерти называется жизненным (клеточным) циклом клетки.

Клеточный цикл способных к размножению клеток включает две стадии: - ИНТЕРФАЗУ (стадия между делениями, интеркинез); - ПЕРИОД ДЕЛЕНИЯ (митоз). В интерфазе происходит подготовка клетки к делению – синтез различных веществ, но главным является удвоение ДНК. По продолжительности она составляет большую часть жизненного цикла. Интерфаза состоит из 3–х периодов: 1) Предсинтетический – G1 (джи один) – наступает сразу после окончания деления. Клетка растет, накапливает различные вещества (богатые энергией), нуклеотиды, аминокислоты, ферменты. Готовится к синтезу ДНК. Хромосома содержит 1 молекулу ДНК (1 хроматида). 2) Синтетический – S происходит удвоение материала – репликация молекул ДНК. Усиленно синтезируется белки и РНК. Происходит удвоение числа центриолей.

3) Постсинтетический G2 – предмитотический, продолжается синтез РНК. Хромосомы содержат 2 свои копии – хроматиды, каждая из которых несет по 1-ой молекуле ДНК (двунитевидная). Клетка готова к делению хромосома сперализуется.

Амитоз – прямое деление

Митоз – непрямое деление

Мейоз – редукционное деление

АМИТОЗ – встречается редко, особенно у стареющих клеток или при патологических состояниях (репарация тканей), ядро остаётся в интефазном состоянии, хромосомы не сперализуются. Ядро делится путем перетяжки. Цитоплазма может и не делится, тогда образуются двуядерные клетки.

МИТОЗ – универсальный способ деления. В жизненном цикле он составляет лишь малую часть. Цикл эпитемальных клеток кишечника кошки составляет 20 – 22 ч., митоз – 1 час. Митоз состоит из 4-х фаз.

1)ПРОФАЗА – происходит укорочение и утолщение хромосом (спирализация) они хорошо видны. Хромосомы состоят из 2-х хроматид (удвоение в периоде интерфазы). Ядрышко и ядерная оболочка распадаются, цитоплазма и кариоплазма смешиваются. Разделившиеся клеточные центры расходятся по длинной оси клетки к полюсам. Образуется веретено деления (состоящее из упругих белковых нитей).

2)МЕТОФАЗА – хромосомы располагаются в одной плоскости по экватору, образуя метафазную пластинку. Веретено деления состоит из 2-х типов нитей: одни соединяют клеточные центры, вторые – (число их = числу хромосом 46) прикреплены, одним концом к центросоме (клеточному центру), другой к центромере хромосомы. Центромера тоже начинает делиться на 2. Хромосомы (в конце) расщепляются в области центромеры.



3)АНАФАЗА – самая короткая фаза митоза. Нити веретена деления начинают укорачиваться и хроматиды каждой хромосомы удаляются друг от друга по направлению к полюсам. Каждая хромосома состоит только из 1 хроматиды.

4)ТЕЛОФАЗА – хромосомы концентрируются у соответствующих клеточных центров, деспирализуются. Формируются ядрышки, ядерная оболочка, образуется мембрана, отделяющая сестринские клетки друг от друга. Сестринские клетки расходятся.

Биологическое значение митоза состоит в том, что в результате его каждая дочерняя клетка получает точно такой же набор хромосом, а следовательно, и точно такую же генетическую информацию, какими обладала материнская клетка.

7. МЕЙОЗ – ДЕЛЕНИЕ, СОЗРЕВАНИЕ ПОЛОВЫХ КЛЕТОК

Сущность полового размножения заключается в слиянии 2-х ядер половых клеток (гамет) сперматозоидов (муж) и яйцеклетки (жен). В процессе развития половые клетки претерпевают митотическое деление, а в период созревания – мейотическое. Поэтому зрелые половые клетки содержат гаплоидный набор хромосом (п): П +П=2П (зигота). Если бы гаметы имели 2п (диплоидн.) то, потомки имели бы тетраплоидное (2п+2п)=4п число хромосом и т.д. Число хромосом у родителей и потомков остаётся постоянным. Уменьшение числа хромосом вдвое происходит путем мейоза, (гаметогенез). Он состоит из 2-х идущих друг за другом делений:

Редукционного

Эквационного (уравнительного)

без интерфазы между ними.

ПРОФАЗА 1 ОТЛИЧАЕТСЯ ОТ ПРОФАЗЫ МИТОЗА.

1.Лептонема (тонкие нити) в ядре диплоидный набор (2п) длинных тонких хромосом 46 шт.

2.Зигонема – гомологические хромосомы (парные) – 23 пары у человека коньюгируют (молния) «подгонка» гена к гену соединяются по всей длине 2п – 23 шт.

3.Пахинема (толстые нити) гомолог. хромосомы тесно связаны (бивалентны). Каждая хромосома состоит из 2-х хроматид, т.е. бивалент – из 4-х хроматид.

4.Диплонема (двойные нити) коньюгирование хромосомы отталкиваются друг от друга. Происходит перекручивание, а иногда обмен обломившимися частями хромосом – перекрест (кроссинговер) – это резко увеличивает наследственную изменчивость, новые комбинации генов.

5.Диакинез (движение вдаль) – заканчивается профаза хромосомы сперализуются, ядерная оболочка, распадается и наступает вторая фаза – метафаза первого деления.

Метафаза 1 – по экватору клетки лежат биваленты (тетрады), веретено деления сформировано (23 пары).

Анафаза 1 – к каждому полюсу расходятся не по 1-ой хроматиде, а по 2 хромосомы. Связь между гомологичными хромосомами ослабляются. Парные хромосомы отходят друг от друга к разным полюсам. Образуется гаплоидный набор.

Телофаза 1 – у полюсов веретена собирается одинарный, гаплоидный набор хромосом, в которых каждый вид хромосом представлен не парой, а 1-ой хромосомой состоящей из 2-х хроматид цитоплазма не всегда делится.

Мейоз 1- деление приводит к образованию клеток, несущих гаплоидный набор хромосом, но хромосомы состоят из 2-х хроматид, т.е. имеют удвоенное количество ДНК. Поэтому клетки уже готовы ко 2-му делению.

Мейоз 2 деление (эквивалентное). Все стадии: профаза 2, метафаза 2, анафаза 2 и телофаза 2. Проходит как митоз, но делятся гаплоидные клетки.

В результате деления материнские двунитчатые хромосомы, расщепляясь, образуют однонитчатые дочерние хромосомы. В каждой клетке (4) будет гаплоидный набор хромосом.

Т.О. в результате 2-х метотических делений происходит:

Увеличивается наследственная изменчивость благодаря различным комбинациям хромосом в дочерних наборах

Число возможных комбинаций пар хромосом = 2 в степени n (число хромосом в гаплоидном наборе 23 – человек).

Основные назначения мейоза заключается, в создание клеток с гаплоидным набором хромосом – осуществляется благодаря образованию в начале 1 мейотического деления пар гомологичных хромосом и последующему расхождению гомологов в разные дочерние клетки. Образование мужских половых клеток – это сперматогенез, женских - овогенез.

Для того чтобы клетка смогла полноценно разделиться, она должна увеличиться в размерах и создать достаточное количество органоидов. А для того чтобы не растерять наследственную информацию при делении пополам, она должна изготовить копии своих хромосом. И, наконец, для того чтобы распределить наследственную информацию строго поровну между двумя дочерними клеткам, она должна в правильном порядке расположить хромосомы перед их распределением по дочерним клеткам. Все эти важные задачи решаются в процессе клеточного цикла.

Клеточный цикл имеет важное значение, т.к. он демонстрирует важнейшие : способность к размножению, росту и дифференцировке. Обмен тоже идёт, но его не рассматривают при изучении клеточного цикла.

Определение понятия

Клеточный цикл - это период жизни клетки от рождения до образования дочерних клеток.

У животных клеток клеточный цикл, как промежуток времени между двумя делениями (митозами), длится в среднем от 10 до 24 часов.

Клеточный цикл состоит из нескольких периодов (синоним: фазы), которые закономерно сменяют друг друга. В совокупности первые фазы клеточного цикла (G 1 , G 0 , S и G 2) носят название интерфазы , а последняя фаза называется .

Рис. 1. Клеточный цикл.

Периоды (фазы) клеточного цикла

1. Период первого роста G1 (от английского Growth - рост), составляет 30-40% цикла, и период покоя G 0

Синонимы: постмитотический (наступает после митоза) период, пресинтетический (проходит перед синтезом ДНК) период.

Клеточный цикл начинается от рождения клетки в результате митоза. После деления дочерние клетки уменьшены в размерах и органоидов в них меньше, чем в норме. Поэтому "новорожденная" маленькая клетка в первом периоде (фазе) клеточного цкла (G 1) растёт и увеличивается в размерах, а также формирует недостающие органоиды. Идёт активный синтез белков, необходимых для ввсего этого. В результате клетка становится полноценной, можно сказать, "взрослой".

Чем обычно заканчивается для клетки период роста G 1 ?

  1. Вступллением клетки в процесс . За счёт дифференцировки клетка приобретает специальные особенности для выполнения функций, необходимых всему органу и организму. Запускается дифференцировка управляющими веществами (гормонами), воздействующими на соответствующие молекулярные рецепторы клетки. Клетка, завершившая свою дифференцировку, выпадает из круговорота делений и находится в периоде покоя G 0 . Требуется воздействие активирующих веществ (митогенов) для того, чтобы она претерпела дедифференцировку и вновь вернулась в клеточный цикл.
  2. Гибелью (смертью) клетки.
  3. Вступлением в следующий период клеточного цикла -синтетический.

2. Синтетический период S (от английского Synthesis - синтез), составляет 30-50% цикла

Понятие синтеза в названии этого периода относится к синтезу (репликации) ДНК , а не к каким-либо другим процессам синтеза. Достигнув определенного размера в результате прохождения периода первого роста, клетка вступает в синтетический период, или фазу, S, в котором происходит синтез ДНК. За счёт репликации ДНК клетка удваивает свой генетический материал (хромосомы), т.к. в ядре образуется точная копия каждой хромосомы. Каждая хроммосома становится двойной и весь хромосомный набор становится двойным, или диплоидным . В результате клетка теперь готова поделить наследственный материал поровну между двумя дочерними клетками, не потеряв при этом ни одного гена.

3. Период второго роста G 2 (от английского Growth - рост), составляет 10-20% цикла

Синонимы: премитотический (проходит перед митозом) период, постсинтетический (наступает после синтетического) период.

Период G 2 является подготовительным к очередному делению клетки. Во время второго периода роста G 2 клетка производит белки, требующиеся для митоза, в частности, тубулин для веретена деления; создаёт запас энергии в виде АТФ; проверяет, закончена ли репликация ДНК, и готовится к делению.

4. Период митотического деления M (от английского Mitosis - митоз), составляет 5-10% цикла

После деления клетка оказывается в новой фазе G 1 , и клеточный цикл завершается.

Регуляция клеточного цикла

На молекулярном уровне переход от одной фазы цикла к другой регулируют два белка - циклин и циклинзависимая киназа (CDK).

Для регуляции клеточного цикла используется процесс обратимого фосфорилирования/дефосфорилирования регуляторных белков, т.е. присоединение к ним фосфатов с последующим отщеплением. Ключевым веществом, регулирующим вступление клетки в митоз (т.е. её переход от фазы G 2 к фазе M), является специфическая серин/треонин-протеинкиназа , которая носит название фактор созревания - ФС, или MPF, от английского maturation promoting factor. В активной форме этот белковый фермент катализирует фосфорилирование многих белков, принимающих участие в митозе. Это, например, входящий в состав хроматина гистон H 1 , ламин (компонент цитоскелета, находящийся в ядерной мембране), факторы транскрипции, белки митотического веретена, а также ряд ферментов. Фосфорилирование этих белков фактором созревания MPF активирует их и запускает процесс митоза. После завершения митоза регуляторная субъединица ФС, циклин , маркируется убиквитином и подвергается распаду (протеолизу). Теперь наступает очередь протеинфосфатаз , которые дефосфорилируют белки, принимавшие участие в митозе, чем переводят их в неактивное состояние. В итоге клетка возвращается в состояние интерфазы.

ФС (MPF) - это гетеродимерный фермент, включающий в себя регуляторную субъединицу, а именно циклин, и каталитическую субъединицу, а именно циклинзависимую киназу ЦЗК (CDK от англ. cyclin dependent kinase), она же p34cdc2; 34 кДа. Активной формой этого фермента является лишь димер ЦЗК+циклин. Кроме того, активность ЦЗК регулируется путем обратимого фосфорилирования самого фермента. Циклины получили такое название потому, что их концентрация циклически изменяется в соответствии с периодами клеточного цикла, в частности, она снижается перед началом деления клетки.

В клетках позвоночных присутствует ряд различных циклинов и циклинзависимых киназ. Разнообразные сочетания двух субъединиц фермента регулируют запуск митоза, начало процесса транскрипции в G1-фазе, переход критической точки после завершения транскрипции, начало процесса репликации ДНК в S-периоде интерфазы (стартовый переход) и другие ключевые переходы клеточного цикла (на схеме не приведены).
В ооцитах лягушки вступление в митоз (G2/M-переход) регулируется путем изменения концентрации циклина. Циклин непрерывно синтезируется в интерфазе до достижения максимальной концентрации в фазе М, когда запускается весь каскад фосфорилирования белков, катализируемый ФС. К окончанию митоза циклин быстро разрушается протеиназами, также активируемыми ФС. В других клеточных системах активность ФС регулируется за счет различной степени фосфорилирования самого фермента.

Клеточный цикл - это период существования клетки от момента её образования путем деления материнской клетки до собственного деления или гибели.

Длительность клеточного цикла

Длительность клеточного цикла у разных клеток варьируется. Быстро размножающиеся клетки взрослых организмов, такие как кроветворные или базальные клетки эпидермиса и тонкой кишки, могут входить в клеточный цикл каждые 12-36 ч. Короткие клеточные циклы (около 30 мин) наблюдаются при быстром дроблении яиц иглокожих, земноводных и других животных. В экспериментальных условиях короткий клеточный цикл (около 20 ч) имеют многие линии клеточных культур. У большинства активно делящихся клеток длительность периода между митозами составляет примерно 10-24 ч.

Фазы клеточного цикла

Клеточный цикл эукариот состоит из двух периодов:

    Период клеточного роста, называемый «интерфаза», во время которого идет синтез ДНК и белков и осуществляется подготовка к делению клетки.

    Периода клеточного деления, называемый «фаза М» (от слова mitosis - митоз).

Интерфаза состоит из нескольких периодов:

    G 1 -фазы (от англ. gap - промежуток), или фазы начального роста, во время которой идет синтез мРНК, белков, других клеточных компонентов;

    S-фазы (от англ. synthesis - синтез), во время которой идет репликация ДНК клеточного ядра, также происходит удвоение центриолей (если они, конечно, есть).

    G 2 -фазы, во время которой идет подготовка к митозу.

У дифференцировавшихся клеток, которые более не делятся, в клеточном цикле может отсутствовать G 1 фаза. Такие клетки находятся в фазе покоя G 0 .

Период клеточного деления (фаза М) включает две стадии:

    кариокинез (деление клеточного ядра);

    цитокинез (деление цитоплазмы).

В свою очередь, митоз делится на пять стадий.

Описание клеточного деления базируется на данных световой микроскопии в сочетании с микрокиносъемкой и на результатах световой и электронной микроскопии фиксированных и окрашенных клеток.

Регуляция клеточного цикла

Закономерная последовательность смены периодов клеточного цикла осуществляется при взаимодействии таких белков, как циклин-зависимые киназы и циклины. Клетки, находящиеся в G 0 фазе, могут вступать в клеточный цикл при действии на нихфакторов роста. Разные факторы роста, такие как тромбоцитарный, эпидермальный, фактор роста нервов, связываясь со своими рецепторами, запускают внутриклеточный сигнальный каскад, приводящий в итоге к транскрипции генов циклинов ициклин-зависимых киназ. Циклин-зависимые киназы становятся активными лишь при взаимодействии с соответствующими циклинами. Содержание различных циклинов в клетке меняется на протяжении всего клеточного цикла. Циклин является регуляторной компонентой комплекса циклин-циклин-зависимая киназа. Киназа же является каталитическим компонентом этого комплекса. Киназы не активны без циклинов. На разных стадиях клеточного цикла синтезируются разные циклины. Так, содержание циклина B в ооцитах лягушки достигает максимума к моменту митоза, когда запускается весь каскад реакций фосфорилирования, катализируемых комплексом циклин-В/циклин-зависимая киназа. К окончанию митоза циклин быстро разрушается протеиназами.

Биологическое значение деления клеток. Новые клетки возникают в результате деления уже существующих. Если делится одноклеточный организм, то из него образуются два новых. Многоклеточный организм также начинает свое развитие чаще всего с одной-единственной клетки. Путем многократных делений образуется огромное количество клеток, которые и составляют организм. Деление клеток обеспечивает размножение и развитие организмов, а значит, непрерывность жизни на Земле.

Клеточный цикл — жизнь клетки с момента ее образования в процессе деления материнской клетки до собственного деления (включая это деление) или гибели.

В течение этого цикла каждая клетка растет и развивается таким образом, чтобы успешно выполнять свои функции в организме. Далее клетка функционирует определенное время, по истечении которого либо делится, образуя дочерние клетки, либо погибает.

У различных видов организмов клеточный цикл занимает разное время: например, у бактерий он длится около 20 мин, у инфузории туфельки — от 10 до 20 ч. Клетки многоклеточных организмов на ранних стадиях развития делятся часто, а затем клеточные циклы значительно удлиняются. Например, сразу после рождения человека клетки головного мозга делятся огромное число раз: 80 % нейронов головного мозга формируется именно в этот период. Однако большинство этих клеток быстро теряет способность к делению, а часть доживает до естественной смерти организма, вообще не делясь.

Клеточный цикл состоит из интерфазы и митоза (рис. 54).

Интерфаза — промежуток клеточного цикла между двумя делениями. В течение всей интерфазы хромосомы неспирализованы, они находятся в ядре клетки в виде хроматина. Как правило, интерфаза состоит из трех периодов: пре-синтетического, синтетического и постсинтетического.

Пресинтетический период (G,) — наиболее продолжительная часть интерфазы. Он может продолжаться у различных типов клеток от 2—Зч до нескольких суток. Во время этого периода клетка растет, в ней увеличивается количество органоидов, накапливается энергия и вещества для последующего удвоения ДНК- В течение Gj-периода каждая хромосома состоит из одной хроматиды, т. е. количество хромосом (п) и хроматид (с) совпадает. Набор хромосом и хро-

матид (молекул ДНК) диплоидной клетки в G r периоде клеточного цикла можно выразить записью 2п2с.

В синтетическом периоде (S) происходит удвоение ДНК, а также синтез белков, необходимых для последующего формирования хромосом. В этот же период происходит удвоение центриолей.

Удвоение ДНК называют репликацией. В ходе репликации специальные ферменты разъединяют две цепи исходной материнской молекулы ДНК, разрывая водородные связи между комплементарными нуклеотидами. С разошедшимися цепями связываются молекулы ДНК-полимеразы — главного фермента репликации. Затем молекулы ДНК-полимеразы начинают двигаться вдоль материнских цепей, используя их в качестве матриц, и синтезировать новые дочерние цепи, подбирая для них нуклеотиды по принципу комплементарности (рис. 55). Например, если участок материнской цепи ДНК имеет последовательность нуклеотидов А Ц Г Т Г А, то участок дочерней цепи будет иметь вид ТГЦАЦТ. В связи с этим репликацию относят к реакциям матричного синтеза. В результате репликации образуются две идентичные двуцепочечные молекулы ДНК- В состав каждой из них входит одна цепочка исходной материнской молекулы и одна вновь синтезированная дочерняя цепочка.

К концу S-периода каждая хромосома состоит уже из двух идентичных сестринских хроматид, соединенных друг с другом в области центромеры. Количество хроматид в каждой паре гомологичных хромосом становится равным четырем. Таким образом, набор хромосом и хроматид диплоидной клетки в конце S-периода (т. е. после репликации) выражается записью 2п4с.

Постсинтетический период (G 2) наступает после удвоения ДНК- В это время клетка накапливает энергию и синтезирует белки для предстоящего деления (например, белок тубулин для построения микротрубочек, образующих впоследствии веретено деления). В течение всего С 2 -периода набор хромосом и хроматид в клетке остается неизменным — 2п4с.

Интерфаза завершается, и начинается деление, в результате которого образуются дочерние клетки. В ходе митоза (основного способа деления клеток эукариот) сестринские хроматиды каждой хромосомы отделяются друг от друга и попадают в разные дочерние клетки. Следовательно, молодые дочерние клетки, вступающие в новый клеточный цикл, имеют набор 2п2с.

Таким образом, клеточный цикл охватывает промежуток времени от возникновения клетки до ее полного разделения на две дочерние и включает интерфазу (G r , S-, С 2 -периоды) и митоз (см. рис. 54). Такая последовательность периодов клеточного цикла характерна для постоянно делящихся клеток, например для клеток росткового слоя эпидермиса кожи, красного костного мозга, слизистой оболочки желудочно-кишечного тракта животных, клеток образовательной ткани растений. Они способны делиться каждые 12—36 ч.

В противоположность этому большинство клеток многоклеточного организма встают на путь специализации и после прохождения части Gj-периода могут переходить в так называемый период покоя (Go-период). Клетки, пребывающие в G n -периоде, выполняют свои специфические функции в организме, в них протекают процессы обмена веществ и энергии, но не происходит подготовка к репликации. Такие клетки, как правило, навсегда утрачивают способность к делению. Примерами могут служить нейроны, клетки хрусталика глаза и многие другие.

Однако некоторые клетки, находящиеся в Gn-периоде (например, лейкоциты, клетки печени), могут выходить из него и продолжать клеточный цикл, пройдя все периоды интерфазы и митоз. Так, клетки печени могут снова приобретать способность к делению спустя несколько месяцев пребывания в периоде покоя.

Клеточная гибель. Гибель (смерть) отдельных клеток или их групп постоянно встречается у многоклеточных организмов, так же как гибель одноклеточных организмов. Гибель клеток можно разделить на две категории: некроз (от греч. некрос — мертвый) и ап о птоз, который часто называют программируемой клеточной смертью или даже клеточным самоубийством.

Некроз — отмирание клеток и тканей в живом организме, вызванное действием повреждающих факторов. Причинами некроза может быть воздействие высоких и низких температур, ионизирующих излучений, различных химических веществ (в том числе токсинов, выделяемых болезнетворными микроорганизмами). Некротическая гибель клеток наблюдается также в результате их механического повреждения, нарушения кровоснабжения и иннервации тканей, при аллергических реакциях.

В повре>вденных клетках нарушается проницаемость мембран, останавливается синтез белков, прекращаются другие процессы обмена веществ, происходит разрушение ядра, органоидов и, наконец, всей клетки. Особенностью некроза является то, что такой гибели подвергаются целые группы клеток (например, при инфаркте миокарда из-за прекращения снабжения кислородом отмирает участок сердечной мышцы, содержащий множество клеток). Обычно отмирающие клетки подвергаются атаке лейкоцитов, и в зоне некроза развивается воспалительная реакция.

Апоптоз — запрограммированная гибель клеток, регулируемая организмом. В ходе развития и функционирования организма часть его клеток погибает без непосредственного повреждения. Этот процесс протекает на всех стадиях жизни организма, даже в эмбриональный период.

Во взрослом организме также постоянно происходит запланированная гибель клеток. Миллионами гибнут клетки крови, эпидермиса кожи, слизистой оболочки желудочно-кишечного тракта и др. После овуляции погибает часть фолликулярных клеток яичника, после лактации — клетки молочных желез. В организме взрослого человека ежедневно в результате апоптоза гибнет 50—70 миллиардов клеток. При апоптозе клетка распадается на отдельные фрагменты, окруженные плазмалеммой. Обычно фрагменты погибших клеток поглощаются лейкоцитами или соседними клетками без запуска воспалительной реакции. Восполнение утраченных клеток обеспечивается путем деления.

Таким образом, апоптоз как бы прерывает бесконечность клеточных делений. От своего «рождения» до апоптоза клетки проходят определенное количество нормальных клеточных циклов. После каждого из них клетка переходит либо к новому клеточному циклу, либо к апоптозу.

1. Что такое клеточный цикл?

2. Что называется интерфазой? Какие основные события происходят в G r , S- и 0 2 -периодах интерфазы?

3. Для каких клеток характерен G 0 -nepnofl? Что происходит в этот период?

4. Каким образом осуществляется репликация ДНК?

5. Одинаковы ли молекулы ДНК, входящие в состав гомологичных хромосом? В состав сестринских хроматид? Почему?

6. Что представляет собой некроз? Апоптоз? В чем заключается сходство и различия некроза и апоптоза?

7. Каково значение запрограммированной гибели клеток в жизни многоклеточных организмов?

8. Как вы думаете, почему у подавляющего большинства живых организмов основным хранителем наследственной информации является ДНК, а РНК выполняет лишь вспомогательные функции?

    Глава 1. Химические компоненты живых организмов

  • § 1. Содержание химических элементов в организме. Макро- и микроэлементы
  • § 2. Химические соединения в живых организмах. Неорганические вещества
  • Глава 2. Клетка - структурная и функциональная единица живых организмов

  • § 10. История открытия клетки. Создание клеточной теории
  • § 15. Эндоплазматическая сеть. Комплекс Гольджи. Лизосомы
  • Глава 3. Обмен веществ и преобразование энергии в организме

  • § 24. Общая характеристика обмена веществ и преобразование энергии
  • Глава 4. Структурная организация и регуляция функций в живых организмах

Рост тела человека обусловлен увеличением размера и количества клеток, при этом последнее обеспечивается процессом деления, или митозом. Пролиферация клеток происходит под воздействием внеклеточных факторов роста, а сами клетки проходят через повторяющуюся последовательность событий, известную как клеточный цикл.

Различают четыре основные фазы : G1 (пресинтетическая), S (синтетическая), G2 (постсинтетическая) и М (митотическая). Затем следует разделение цитоплазмы и плазматической мембраны, в результате чего возникают две одинаковые дочерние клетки. Фазы Gl, S и G2 входят в состав интерфазы. Репликация хромосом происходит во время синтетической фазы, или S-фазы.
Большинство клеток не подвержено активному делению, их митотическая активность подавляется во время фазы GO, входящей в состав фазы G1.

Продолжительность М-фазы составляет 30-60 мин, в то время как весь клеточный цикл проходит примерно за 20 ч. В зависимости от возраста нормальные (не опухолевые) клетки человека претерпевают до 80 митотических циклов.

Процессы клеточного цикла контролируются последовательно повторяющимися активацией и инактивацией ключевых ферментов, называемых цик дин зависимыми протеинкиназами (ЦЗК), а также их кофакторов - циклинов. При этом под воздействием фосфокиназ и фосфатаз происходят фосфорилирование и дефосфорилирование особых циклин-ЦЗК-комплексов, ответственных за начало тех или иных фаз цикла.

Кроме того, на соответствующих стадиях подобные ЦЗК-белки вызывают уплотнение хромосом, разрыв ядерной оболочки и реорганизацию микротрубочек цитоскелета в целях формирования веретена деления (митотического веретена).

G1-фаза клеточного цикла

G1-фаза - промежуточная стадия между М- и S-фазами, во время которой происходит увеличение количества цитоплазмы. Кроме того, в конце фазы G1 расположена первая контрольная точка, на которой происходят репарация ДНК и проверка условий окружающей среды (достаточно ли они благоприятны для перехода к S-фазе).

В случае если ядерная ДНК повреждена, усиливается активность белка р53, который стимулирует транскрипцию р21. Последний связывается со специфическим циклин-ЦЗК-комплексом, ответственным за перевод клетки в S-фазу, и тормозит её деление на стадии Gl-фазы. Это позволяет репарационным ферментам исправить повреждённые фрагменты ДНК.

При возникновении патологий белка р53 репликация дефективной ДНК продолжается, что позволяет делящимся клеткам накапливать мутации и способствует развитию опухолевых процессов. Именно поэтому белок р53 часто называют «стражем генома».

G0-фаза клеточного цикла

Пролиферация клеток у млекопитающих возможна только при участии секретируемых другими клетками внеклеточных факторов роста , которые оказывают своё воздействие через каскадную сигнальную трансдукцию протоонкогенов. Если во время фазы G1 клетка не получает соответствующих сигналов, то она выходит из клеточного цикла и переходит в состояние G0, в котором может находиться несколько лет.

Блок G0 происходит при помощи белков - супрессоров митоза, один из которых - ретинобластомный белок (Rb-белок), кодируемый нормальными аллелями гена ретинобластомы. Данный белок прикрепляется кособым регуляторным протеинам, блокируя стимуляцию транскрипции генов, необходимых для пролиферации клеток.

Внеклеточные факторы роста разрушают блок путём активации Gl-специфических циклин-ЦЗК-комплексов , которые фосфорилируют Rb-белок и изменяют его конформацию, в результате чего разрывается связь с регуляторными белками. При этом последние активируют транскрипцию кодируемых ими генов, которые запускают процесс пролиферации.

S фаза клеточного цикла

Стандартное количество двойных спиралей ДНК в каждой клетке, соответствующее диплоидному набору одноцепочечных хромосом, принято обозначать как 2С. Набор 2С сохраняется на протяжении фазы G1 и удваивается (4С) во время S-фазы, когда синтезируется новая хромосомная ДНК.

Начиная с конца S-фазы и до М-фазы (включая фазу G2) каждая видимая хромосома содержит две плотно связанные друг с другом молекулы ДНК, называемые сестринскими хроматидами. Таким образом, в клетках человека начиная с конца S-фазы и до середины М-фазы присутствуют 23 пары хромосом (46 видимых единиц), но 4С (92) двойные спирали ядерной ДНК.

В процессе митоза происходит распределение одинаковых наборов хромосом по двум дочерним клеткам таким образом, чтобы в каждой из них содержалось по 23 пары 2С-молекул ДНК. Следует отметить, что фазы G1 и G0 - единственные фазы клеточного цикла, во время которых в клетках 46 хромосомам соответствует 2С-набор молекул ДНК.

G2-фаза клеточного цикла

Вторая контрольная точка , на которой проверяется размер клетки, находится в конце фазы G2, расположенной между S-фазой и митозом. Кроме того, на данной стадии, прежде чем перейти к митозу, происходит проверка полноты репликации и целостности ДНК. Митоз (М-фаза)

1. Профаза . Хромосомы, каждая из которых состоит из двух одинаковых хроматид, начинают уплотняться и становятся видимыми внутри ядра. На противоположных полюсах клетки вокруг двух центросом из волокон тубулина начинает образовываться веретеноподобный аппарат.

2. Прометафаза . Происходит разделение мембраны ядра. Вокруг центромер хромосом формируются кинетохоры. Волокна тубулина проникают внутрь ядра и концентрируются вблизи кинетохор, соединяя их с волокнами, исходящими из центросом.

3. Метафаза . Натяжение волокон заставляет хромосомы выстраиваться посередине в линию между полюсами веретена, формируя тем самым метафазную пластинку.

4. Анафаза . ДНК центромер, разделённая между сестринскими хроматидами, дуплицируется, хроматиды разделяются и расходятся ближе к полюсам.

5. Телофаза . Разделённые сестринские хроматиды (которые с этого момента считают хромосомами) достигают полюсов. Вокруг каждой из групп возникает ядерная мембрана. Уплотнённый хроматин рассеивается и происходит формирование ядрышек.

6. Цитокинез . Клеточная мембрана сокращается и посередине между полюсами образуется борозда дробления, которая со временем разделяет две дочерние клетки.

Цикл центросомы

Во время фазы G1 происходит разделение пары центриолей, сцепленных с каждой центросомой. На протяжении S- и G2-фаз справа от старых центриолей формируется новая дочерняя центриоль. В начале М-фазы центросома разделяется, две дочерние центросомы расходятся к полюсам клетки.



Похожие публикации