Ретикулярная формация: особенности и функции. Ретикулярная формация (сетевидная формация, formatio reticelaris) Нейроны ретикулярной формации

Впервые ретикулярная формация была описана в 1865 году немецким ученым О.Дейтерсом, который предложил и этот термин. Данным термином обозначали и продолжают обозначать участки мозга, в которых располагаются клетки различных размеров и форм, окруженные множеством волокон, идущих во всех направлениях. В конце прошлого века В.М.Бехтерев выделил в ретикулярной формации отдельные ядра.

Ретикулярная формация располагается в спинном мозге между задним и боковым рогами, а в ромбовидном и среднем мозге локализуется в покрышке. В ретикулярной формации ствола головного мозга человека описывают 22 ядра, которые объединяют в латеральную, медиальную и среднюю группы. Из среднего мозга ретикулярная формация продолжается в промежуточный мозг, в котором она представлена внутрипластинчатыми и ретикулярными ядрами таламуса. У низших животных ретикулярная формация имеет еще более широкое распространение в мозговом стволе. В процессе эволюции из нее выделяются как самостоятельные образования ядра моста, красное ядро, черное вещество.

Нервные связи ретикулярной формации весьма обширны. В ее латеральной трети находятся воспринимающие поля, в которых оканчиваются волокна различных афферентных систем, проходящих в стволе головного мозга. К ретикулярной формации подходят коллатерали медиальной и латеральной петель, часть чувствительных волокон V, VIII, IX и X черепных нервов. Медиальные 2/3 ретикулярной формации составляют эффекторные поля, связанные с двигательными ядрами черепных нервов, мозжечком, промежуточным мозгом, ядрами передних рогов спинного мозга.

Ядра ретикулярной формации, расположенные в продолговатом мозге, имеют связи с вегетативными ядрами блуждающего и языкоглоточного нервов, симпатическими ядрами спинного мозга. Поэтому они участвуют в регуляции сердечной деятельности, дыхания, тонуса сосудов, секреции желез и т.д.

Ядра Кахаля и Даркшевича, относящиеся к ретикулярной формации среднего мозга, имеют связи с ядрами III, IV, VI, VIII и XI пар черепных нервов. Они координируют работу этих нервных центров, что очень важно для обеспечения сочетанного поворота головы и глаз.

В составе ретикулярной формации имеются восходящие и нисходящие пути. Восходящие пути передают раздражения из нижних этажей ретикулярной формации к ядрам таламуса. Различают спинно-ретикулярный путь, начинающийся в ретикулярной формации спинного мозга; ретикуло-таламический путь, начинающийся в ретикулярной формации продолговатого мозга и моста; покрышечно-таламический путь, начинающийся в ретикулярной формации среднего мозга. Основным нисходящим путем является ретикулярно-спинномозговой путь, который берет начало в мосте и продолговатом мозге и идет к нейронам передних рогов спинного мозга и промежуточной части серого вещества. Посредством этого пути ретикулярная формация может оказывать облегчающее или тормозящее влияние на двигательные нейроны спинного мозга.

Верхние отделы ретикулярной формации связаны с корой большого мозга. Из внутрипластинчатых и ретикулярных ядер таламуса идут волокна в различные области коры. Признается также наличие прямых восходящих волокон из ретикулярной формации среднего мозга в кору. Особенностью ретикуло-корковых проекций является их диффузный характер, захватывающий все части коры. Этим они принципиально отличаются от специфических афферентных проекций различных видов чувствительности, которые связаны с определенными корковыми полями. Ретикуло-корковые волокна оканчиваются во всех слоях коры, тогда как местом окончания специфических чувствительных путей является внутренняя зернистая пластинка (IV слой коры).

Специфические и диффузная проекционные системы представляют собой 2 параллельных пути афферентных сигналов, направляемых в кору большого мозга. Различные раздражения, воспринимаемые рецепторами, передаются по специфическим афферентным системам в соответствующие воспринимающие области коры (общую чувствительную, зрительную, слуховую зоны и т.д.). Но вместе с этим в кору поступают неспецифические афферентные импульсы из ретикулярной формации по ее диффузной проекционной системе. Неспецифические импульсы осуществляют активацию коры, необходимую для восприятия специфических раздражений. Следует подчеркнуть важную роль неспецифических афферентных ретикулярных волокон в отборе (дифференцированном проведении импульсов) информации, поступающей к коре полушарий большого мозга. Прерывание потока импульсов из ретикулярной формации приводит к снижению тонуса коры, в результате чего наступает сон. Когда же прохождение импульсов из ретикулярной формации в кору восстанавливается, происходит пробуждение.

Установлена важная роль в регуляции сна и бодрствования относящихся к ретикулярной формации голубого пятна и ядер шва. Голубое пятно находится в верхнелатеральной части ромбовидной ямки, его нейроны продуцируют норадреналин, который по аксонам поступает в вышележащие отделы мозга. Активность этих нейронов максимальна во время бодрствования, снижается на ранних стадиях сна и почти полностью угасает во время глубокого сна. Ядра шва располагаются по средней линии продолговатого мозга. Нейроциты этих ядер вырабатывают серотонин, который вызывает процессы разлитого торможения и состояние сна.

Действие ретикулярной формации на кору большого мозга не является односторонним. Кора, в свою очередь, посылает в ретикулярную формацию сигналы. Эти сигналы идут по корково-ретикулярным волокнам, которые начинаются, в основном, в лобных долях полушарий и проходят в составе пирамидных путей к ретикулярной формации моста и продолговатого мозга. Корково-ретикулярные связи оказывают либо тормозное, либо возбуждающее действие на ретикулярную формацию ствола головного мозга, осуществляют корректировку прохождения импульсов по эфферентным путям (отбор эфферентной информации). Благодаря наличию двусторонней, кольцевой связи между ретикулярной формацией и корой может осуществляться саморегуляция корковой деятельности. От функционального состояния ретикулярной формации зависит тонус мускулатуры, работа внутренних органов, настроение, концентрация внимания, память и т.д. В целом ретикулярная формация создает и поддерживает условия осуществления сложной рефлекторной деятельности с участием коры полушарий большого мозга.

Несостоятельными оказались попытки представить ретикулярную формацию как высшую интегративную систему мозга, с которой будто бы связано сознание человека. В действительности сознание и умственная деятельность являются результатом постоянного взаимодействия коры и подкорковых центров, среди которых важная роль принадлежит ретикулярной формации. Как указывал академик П.К.Анохин, кора большого мозга выполняет в высшей нервной деятельности архитектурную функцию, а подкорковые образования обеспечивают ее энергетическую сторону.

Ретикулярная формация ствола мозга рассматривается как один из важных интегративных аппаратов мозга.
К собственно интегративных функций ретикулярной формации относятся:

  1. контроль над состояниями сна и бодрствования
  2. мышечный (фазный и тонический) контроль
  3. обработка информационных сигналов окружающей и внутренней среды организма, которые поступают по разным каналам
Ретикулярная формация объединяет различные участки ствола мозга (ретикулярную формацию продолговатого мозга, варолиева моста и среднего мозга). В функциональном отношении в ретикулярной формации разных отделов мозга есть много общего, поэтому целесообразно рассматривать ее как единую структуру. Ретикулярная формация представляет собой диффузное накопление клеток разного вида и величины, которые разделены многими волокнами. Кроме этого, в середине ретикулярной формации выделяют около 40 ядер и пидьядер. Нейроны ретикулярной формации имеют широко разветвленные дендриты и продолговатые аксоны, часть которых делится Т-образно (один отросток направлен вниз, образуя ретикулярный-спинальный путь, а второй - в верхние отделы головного мозга).

В ретикулярной формации сходится большое количество афферентных путей из других мозговых структур: из коры большого мозга - коллатерали кортико-спинальных (пирамидных) путей, из мозжечка и других структур, а также коллатеральные волокна, которые подходят через ствол мозга, волокна сенсорных систем (зрительные , слуховые и т.д.). Все они заканчиваются синапсами на нейронах ретикулярной формации. Так, благодаря такой организации ретикулярная формация приспособлена к объединению влияний из различных структур мозга и способна влиять на них, то есть выполнять интегративные функции в деятельности ЦНС, определяя в значительной мере общий уровень ее активности.

Свойства ретикулярных нейронов. Нейроны ретикулярной формации способны к устойчивой фоновой импульсной активности. Большинство из них постоянно генерирует разряды частотой 5-10 Гц. Причиной такой постоянной фоновой активности ретикулярных нейронов являются: во-первых, массивная конвергенция различных афферентных влияний (от рецепторов кожных, мышечных, висцеральных, глаза, уши и др.)., А также воздействий из мозжечка, коры большого мозга, вестибулярных ядер и других мозговых структур на один и тот же ретикулярный нейрон. При этом зачастую в ответ на это возникает возбуждение. Во-вторых, активность ретикулярного нейрона может быть изменена гуморальными факторами (адреналин, ацетилхолин, напряжение С02 в крови, гипоксия и др.).. Эти непрерывные импульсы и химические вещества, содержащиеся в крови, поддерживают деполяризацию мембран ретикулярных нейронов, их способность к устойчивой импульсной активности. В связи с этим ретикулярная формация тоже оказывает на другие мозговые структуры постоянный тонический влияние.

Характерной особенностью ретикулярной формации также высокая чувствительность ее нейронов в различных физиологически активных веществ. Благодаря этому деятельность ретикулярных нейронов может быть сравнительно легко блокирована фармакологическими препаратами, которые связываются с циторецепторамы мембран этих нейронов. Особенно активными в этом отношении соединения барбитуровой кислоты (барбитураты), аминазин и другие лекарственные препараты, которые широко применяются в медицинской практике.

Характер неспецифических влияний ретикулярной формации. Ретикулярная формация ствола мозга участвует в регуляции вегетативных функций организма. Однако еще в 1946 г. американский нейрофизиолог Н. W. Megoun и его сотрудники обнаружили, что ретикулярная формация имеет непосредственное отношение к регуляции соматической рефлекторной деятельности. Было доказано, что ретикулярная формация оказывает диффузное неспецифическое, нисходящее и восходящее влияние на другие мозговые структуры.

Нисходящее влияние. При раздражении ретикулярной формации заднего мозга (особенно гигантоклеточной ядра продолговатого мозга и ретикулярного ядра моста, где принимают начало ретикулоспинальному пути), возникает торможение всех спинальных двигательных центров (сгибательных и разгибательных). Это торможение очень глубокое и продолжительное. Такое положение в естественных условиях может наблюдаться при глубоком сне.
Наряду с диффузными тормозящими влияниями, при раздражении определенных участков ретикулярной формации выявляется диффузное влияние, которое облегчает деятельность спинальной двигательной системы.

Ретикулярная формация играет важную роль в регуляции деятельности мышечных веретен, изменяя частоту разрядов, поступающие гамма-эфферентными волокнами к мышцам. Таким образом модулируется обратная импульсация в них.

Восходящий влияние. Исследования Н. W. Megoun, G. Moruzzi (1949) показали, что раздражение ретикулярной формации (заднего, среднего и промежуточного мозга) сказывается на деятельности высших отделов головного мозга, в частности коры большого мозга, обеспечивая переход ее в активное состояние. Это положение подтверждается данными многочисленными экспериментальными исследованиями и клиническими наблюдениями. Так, если животное находится в состоянии сна, то прямое раздражение ретикулярной формации (особенно варолиева моста) через введенные в эти структуры электроды вызывает поведенческую реакцию пробуждения животного. При этом на ЭЭГ возникает характерное изображение - изменение альфа-ритма бета-ритмом, т.е. фиксируется реакция десинхронизации или активизации. Указанная реакция не ограничивается определенным участком коры большого мозга, а охватывает большие ее массивы, т.е. носит генерализованный характер. При разрушении ретикулярной формации или выключении ее восходящих связей с корой большого мозга животное впадает в сноподобное состояние, не реагирует на световые и обонятельные раздражители, фактически не вступает в контакт с внешним миром. То есть конечный мозг прекращает активно функционировать.

Таким образом, ретикулярная формация ствола головного мозга выполняет функции восходящей активирующей системы мозга, которая поддерживает на высоком уровне возбудимость нейронов коры большого мозга.

Кроме ретикулярной формации ствола мозга, в восходящую активирующую систему головного мозга входят также неспецифические ядра таламуса , задний гипоталамус , лимбических структуры. Являясь важным интегративным центром, ретикулярная формация, в свою очередь, является частью более глобальных интеграционных систем мозга, которые включают гипоталамо-лимбические и неокортикальные структуры. Именно во взаимодействии с ними и формируется целесообразное поведение, направленное на приспособление организма к меняющимся условиям внешней и внутренней среды.

Одним из основных проявлений повреждения ретикулярных структур у человека является потеря сознания. Она бывает при , нарушении мозгового кровообращения, опухолях и инфекционных процессах в стволе мозга. Длительность состояния обморока зависит от характера и выраженности нарушений функции ретикулярной активизирующей системы и колеблется от нескольких секунд до многих месяцев. Дисфункция восходящих ретикулярных влияний проявляется тоже потерей бодрости, постоянной патологической сонливостью или частыми приступами засыпания (пароксизмальная гиперсомия), беспокойным ночным сном. Наблюдаются также нарушения (чаще повышении) мышечного тонуса, различные вегетативные изменения, эмоционально-психические расстройства и др.

Ретикулярная формация начинается в срединной части верхних шейных сегментов спинного мозга и продолжается в центральных отделах продолговатого мозга, моста, среднего и промежуточного мозга. Она представляет собой скопления нейронов (ядра) с многочисленными сильно ветвящимися отростками, идущими в разных направлениях и образующими густую сеть. Между нейронами ретикулярной формации образуется очень много синапсов. От всех поступающих в таламус, а затем в кору больших полушарий афферентных путей отходят многочисленные коллатерали к ретикулярной формации, чем и обеспечивается ее восходящая активирующая деятельность. Ретикулярная формация также получает импульсы из мозжечка, подкорковых ядер, лимбической системы, которые обеспечивают эмоционально-адаптивные поведенческие реакции, мотивационные формы поведения.

В ретикулярной формации человека выделяют 48 ядер. Наиболее крупным является гигантоклеточное ядро, которое содержит гигантские нейроны, отсутствующие в других ядрах. Важным свойством нейронов ретикулярной формации является их высокая химическая чувствительность к различным гуморальным факторам и фармакологическим веществам, особенно к анестезирующим препаратам и так называемым успокаивающим средствам.

В ретикулярной формации продолговатого мозга располагаются жизненно важные центры регуляции дыхания, сердечно-сосудистой системы, деятельности пищеварительного тракта, центры рефлекторных актов, связанных с вестибулярными и слуховыми нервами.

Установлено, что ретикулярная формация по восходящим нервным путям оказывает возбуждающее влияние на кору больших полушарий , а по нисходящим путям – возбуждающее или тормозящее действие на деятельность спинного мозга (рис. 84). Ретикулоспинальные влияния играют важную роль в координации простых и сложных движений, в реализации влияний психической сферы на осуществление сложной двигательной поведенческой деятельности человека.

Было обнаружено, что электрическое раздражение гигантоклеточного ядра ретикулярной формации вызывает неспецифическое торможение сгибательных и разгибательных рефлексов, осуществляемых мотонейронами спинного мозга. Влияние ретикулярной формации на мышечный тонус передается по двум ретикуло-спинальным путям: быстропроводящему и медленнопроводящему. Импульсы, поступающие по этим путям, повышают активность гамма-мотонейронов спинного мозга, что в свою очередь возбуждает альфа-мотонейроны, и мышечный тонус увеличивается. Ретикулярная формация может выступать не только в роли регулятора возбудимости мотонейронов спинного мозга, но и принимать участие в процессах, связанных с поддержанием позы и организацией целенаправленных движений.


Активность самой ретикулярной формации поддерживается непрерывным поступлением импульсов, идущих от рецепторов тела. Важная роль в поддержании ее активности принадлежит гуморальным факторам, по отношению к которым она обладает высокой чувствительностью.

Благодаря работам Х. Мегуна и Дж. Моруцци были открыты восходящие, активирующие влияния ретикулярной формации на кору больших полушарий (рис. 84, А). Обнаружено, что ретикулярная формация участвует в регуляции сна и бодрствования. Раздражение и возбуждение ее с помощью вживленных в мозг электродов вызывает пробуждение у спящих животных. Эта поведенческая реакция пробуждения сопровождается учащением ритма электроэнцефалограммы в обширных областях коры больших полушарий. У бодрствующего животного подобное раздражение повышало уровень корковой активности, усиливало внимание к внешним сигналам и улучшало их восприятие. Разрушение восходящих путей от ретикулярной формации приводит к глубокому сну у бодрствовавших животных и уменьшению частоты колебаний электроэнцефалограммы.

Ретикулярная формация может оказывать и тормозное влияние на кору больших полушарий. Оно имеет место в случае длительной и монотонной работы. Например, в производственных условиях при работе на конвейере или в спорте при прохождении длинных и сверхдлинных дистанций.

В электрических проявлениях деятельности мозга активирующие влияния ретикулярной формации проявляются в виде возникновения частой асинхронной активности (десинхронизация), а тормозящие влияния – в виде медленных ритмичных колебаний (синхронизация).

Большинство нейронов ретикулярной формации являются полисенсорными, т.е. отвечают на различные раздражения: световые, звуковые, тактильные и т.д. Эти нейроны имеют обширные рецептивные поля, большой латентный период и слабую воспроизводимость реакции, что сильно отличает их от нейронов специфических ядер. В связи с этим нейроны ретикулярной формации относят к неспецифическим. Точно также восходящие пути ретикулярной формации называют неспецифическими, т.к. они направлены к обширным областям коры больших полушарий в отличие от специфических проекционных путей от органов чувств, идущих в конкретные зоны коры.

Ретикулярной формации принадлежит важная роль в механизмах формирования условнорефлекторных реакций организма. Она повышает активность вегетативных нервных центров , функционируя совместно с симпатическим отделом вегетативной нервной системы. Введение адреналина повышает тонус ретикулярной формации, в результате чего усиливается ее активирующее влияние на кору больших полушарий. Адреналин, выделяемый мозговым веществом надпочечников при эмоциях, действуя на ретикулярную формацию, увеличивает и удлиняет эффекты возбуждения симпатической нервной системы.

Благодаря наличию кольцевых связей в ретикулярной формации происходит взаимодействие афферентных и эфферентных импульсов , возможна их продолжительная циркуляция по кругу. Вследствие этого поддерживается определённый уровень возбуждения самой ретикулярной формации, а она в свою очередь поддерживает тонус и готовность к деятельности различных отделов центральной нервной системы. Активность ретикулярной формации находится под регулирующим влиянием коры больших полушарий (рис. 84, Б).

5.16. Функции мозжечка

Мозжечок расположен позади и чуть выше продолговатого мозга и варолиева моста под большими полушариями. Это надсегментарная структура, появляющаяся на ранних этапах филогенеза хордовых животных. Степень развития мозжечка определяется сложностью среды обитания и передвижения организма. Наибольшего развития мозжечок достигает у человека в связи с прямохождением и усложнением движений при трудовой деятельности. В то же время мозжечок не является жизненно необходимым органом. У людей с врожденным отсутствием мозжечка не наблюдается каких-либо серьезных нарушений движений, препятствующих их жизнедеятельности.

Мозжечок человека состоит из непарной средней части – червя и расположенных по обе стороны от червя двух полушарий. Поверхность мозжечка покрыта серым веществом, толщиной 1–2,5 мм, образующим его кору. Под корой находится белое вещество, в котором группами располагается серое вещество, представляющее собой скопления тел нейронов – ядра мозжечка.

Мозжечок выполняет проводниковую, рефлекторную и интегративную функции. По афферентным спинно-мозжечковым путям в мозжечок поступают импульсы от рецепторов кожи, мышц и сухожилий. От вестибулярных ядер продолговатого мозга по вестибуло-мозжечковым путям в мозжечок поступает информация о положении тела. Кора больших полушарий также посылает афферентные пути в мозжечок, среди которых наиболее важными являются кортико-мосто-мозжечковый и кортико-ретикуло-мозжечковый пути.

Эфферентные пути от мозжечка идут к спинному и продолговатому мозгу, к ретикулярной формации, красным ядрам среднего мозга, к промежуточному мозгу, коре больших полушарий и к подкорковым ядрам.

Мозжечок оказывает рефлекторные влияния на различные двигательные и вегетативные функции. Главное его значение заключается в дополнении и коррекции деятельности остальных двигательных центров. Мозжечок участвует: 1) в регуляции позы и мышечного тонуса; 2) в коррекции медленных целенаправленных движений и координации их с рефлексами поддержания позы; 3) в координации быстрых целенаправленных движений, осуществляемых по команде из коры больших полушарий.

Зона коры червя мозжечка главным образом связана с регуляцией позы, равновесия и мышечного тонуса. Промежуточная околочервячная зона коры мозжечка принимает участие в координации медленных целенаправленных движений с рефлексами поддержания позы.

Боковые участки коры, расположенные на полушариях мозжечка, участвуют в осуществлении быстрых целенаправленных движений. К полушариям мозжечка от ассоциативных областей коры больших полушарий поступает информация о замысле движения по афферентному кортико-мосто-мозжечковому пути, насчитывающему около 20 млн. нервных волокон. В полушариях мозжечка и зубчатом ядре мозжечка информация о замысле движения преобразуется в программу движения, которая в таламусе промежуточного мозга объединяется с программой, поступающей от подкорковых ядер, и далее посылается в двигательные зоны коры больших полушарий. От коры больших полушарий по нисходящим путям передаются команды к мотонейронам спинного мозга и происходит осуществление движений.

Мозжечок вносит в выполнение движений необходимые поправки, обеспечивая точность, ловкость и координированность движений. При нарушении функций мозжечка возникают различные двигательные расстройства: атония, астения, астазия, атаксия, асинергия, дисметрия, адиадохокинез, дезэквилибрия (рис. 85).

Атония характеризуется резким ослаблением мышечного тонуса. Она обычно сопровождается астенией – слабостью и повышенной утомляемостью мышц. Астазия проявляется в утрате способности мышц к длительному тетаническому сокращению, вследствие чего конечности и голова непрерывно дрожат и качаются, т.е. наблюдается тремор. Атаксия характеризуется нарушением координации движений, походки и др. При атаксии ноги широко расставлены, движения избыточны, из-за которых больного как пьяного бросает из стороны в сторону.

Асинергия проявляется в нарушении взаимодействия между двигательными центрами различных мышц. При этом происходит как бы распад программы движения и целостное движение состоит не из одновременных содружественных актов, а распадается на ряд простых движений выполняемых последовательно. Асинергия сочетается с дисметрией , или утратой соразмерности движения. При дисметрии наблюдается несоответствие между интенсивностью мышечного сокращения и задачей выполняемого движения, движения становятся размашистыми и неупорядоченными в пространстве.

Адиадохокинез характеризуется нарушением координации быстрых целенаправленных движений. При этом человек не способен выполнять быструю последовательность движений, например поочередное сгибание и разгибание пальцев. При нарушении функций мозжечка также наблюдается дезэквилибрия, т.е. потеря способности сохранять равновесие.

Мозжечок участвует не только в регуляции движений, но и осуществляет контроль над вегетативными функциями, оказывая облегчающее или угнетающее влияние на деятельность сердечно-сосудистой, дыхательной, пищеварительной систем, на терморегуляцию. Влияния мозжечка осуществляются, по-видимому, благодаря его связям с ретикулярной формацией и гипоталамусом. Деятельность мозжечка протекает в непосредственной связи с корой больших полушарий и под её контролем.

5.17. Промежуточный мозг

Ретикулярная формация (лат. rete - сеть) представляет собой совокупность клеток, клеточных скоплений и нервных волокон, расположенных на всем протяжении ствола мозга (продолговатый мозг, мост, средний и промежуточный мозг) и в центральных отделах спинного мозга. Ретикулярная формация получает информацию от всех органов чувств, внутренних и других органов, оценивает ее, фильтрует и передает в лимбическую систему и кору большого мозга. Она регулирует уровень возбудимости и тонуса различных отделов центральной нервной системы, включая кору большого мозга, играет важную роль в сознании, мышлении, памяти, восприятии, эмоциях, сне, бодрствовании, вегетативных функциях, целенаправленных движениях, а также в механизмах формирования целостных реакций организма. Ретикулярная формация прежде всего выполняет функцию фильтра, который позволяет важным для организма сенсорным сигналам активировать кору мозга, но не пропускает привычные для него или повторяющиеся сигналы.

Ретикулярная формация представляет собой важный пункт на пути восходящей неспецифической соматосенсорной системы. Соматовисцеральные афференты идут в составе спиноретикулярного тракта (переднебоковой канатик), а также, возможно, в составе проприоспинальных (полисинаптических) путей и соответствующих путей от ядра спинального тройничного тракта. К ретикулярной формации приходят также пути от всех других афферентных черепномозговых нервов, т.е. практически от всех органов чувств. Дополнительная афферентация поступает от многих других отделов головного мозга - от моторных областей коры и сенсорных областей коры, от таламуса и гипоталамуса. Имеется также множество эфферентных связей - нисходящие к спинному мозгу и восходящие через неспецифические таламические ядра к коре головного мозга, гипоталамусу и лимбической системе. Большинство нейронов образует синапсы с двумя - тремя афферентами разного происхождения, такая полисенсорная конвергенция характерна для нейронов ретикулярной формации. Другими их свойствами являются большие рецептивные поля поверхности тела, часто билатеральные, длительный латентный период ответа на периферическую стимуляцию (вследствие мультисинаптического проведения), слабая воспроизводимость реакции (стохастические колебания числа потенциалов действия при повторной стимуляции). Все эти свойства противоположны свойствам лемнисковых нейронов в специфических ядрах соматосенсорной системы (рис.9-7 и рис. 5-13).

Функции ретикулярной формации изучены не полностью. Считается, что она участвует в следующих процессах:

1. в регуляции уровня сознания путем воздействия на активность корковых нейронов, например, участие в цикле сон / бодрствование,

2. в придании аффективно-эмоциональной окраски сенсорным стимулам, в том числе болевым сигналам, идущим по переднебоковому канатику, путем проведения афферентной информации к лимбической системе,

3. в вегетативных регулирующих функциях, в том числе во многих жизненно важных рефлексах (циркуляторных рефлексах и дыхательных рефлексах, рефлекторных актах глотания, кашля, чихания), при которых должны взаимно координироваться разные афферентные и эфферентные системы,

4. в целенаправленных движениях в качестве важного компонента двигательных центров ствола мозга.

Вопрс48. Сравнительная характеристика кабельного и сальтаторного видов проведения возбуждения

Нервная ткань обладает таким физиологическим свойством как проводимость, т. е. способностью проводить возбуждение по ходу нервного волокна в виде потенциала действия. Выделяют два вида проведения возбуждения в зависимости от строения нервного волокна. Различают два вида нервных волокон: мякотные (миелиновые) и безмякотные (немиелиновые). В безмякотных нервных волокнах наблюдается непрерывное распространение возбуждения, в основе которого лежат локальные или круговые токи. Как было сказано раньше, возбужденный электроотрицательный участок нервного волокна становится раздражителем для ближайшего невозбужденного электроположительного участка, который возбуждается (возбужденный участок как бы разряжается в сторону невозбужденного, следствием чего и являются появление локальных или круговых токов).

Миелин, прокрывающий нервное волокно, располагается сегментами, т. е. прерывисто. Миелин - хороший изолятор и, если бы он сплошным слоем покрывал нервное волокно, то возбуждение не распространялось бы. Миелиновая оболочка образуется клетками неврилеммы или шванновскими клетками. Плазматическая мембрана одной шванновской клетки обвертывает спирально в несколько слоев участок аксона, длиной в несколько сотых микрон. Между участками аксона, покрытого миелиновой оболочкой, остаются немиеленизированные зоны. Эти зоны называются перехватами Ранвье.

В волокнах, покрытых миелиновой оболочкой (мякотные волокна) возбуждение распространяется скачкообразно (сальтаторно), т. е. по перехватам Ранвье. Как было показано японским физиологом Тасаки, это создает своеобразную систему надежности для распространения возбуждения (разности потенциалов между возбужденным и невозбужденным участками волокна хватает на 5-6 перехватов Ранвье). В случае, если появится повреждение на небольшом участке волокна вследствие большого электрического поля распространение потенциала действия не нарушается. Как известно, начальная часть аксона в нервной клетке не покрыта миелиновой оболочкой. Именно в этом участке волокна и формируется потенциал действия. Возникает разность потенциалов между возбужденным и невозбужденным участком первого перехвата Ранвье, который под влиянием этого электрического поля возбуждается. Затем разность потенциалов формируется между возбужденным первым перехватом Ранвье и следующим, который перезаряжается и возбуждение приобретает распространяющий характер. Таким образом, в основе распространения возбуждения по мякотному волокну, как и безмякотному, лежат также местные (круговые, вихревые) токи. В перехватах Ранвье, находящихся друг от друга на расстоянии 2 мм, обнаружена большая плотность натриевых каналов - до 1200 на 1 мкм2, что значительно облегчает проведение возбуждения по нервному волокну. Прерывистое распространение возбуждения имеет некоторые преимущества по сравнению с непрерывным. Во-первых, скорость распространения возбуждения в волокнах, покрытых миелином, в 8-10 раз быстрее, чем в безмякотных. Во-вторых, на распространение возбуждения прерывистого типа затрачивается меньше энергии, оно более экономично, что, по всей вероятности, связано с большой плотностью натриевых каналов в перехватах Ранвье.

При распространении возбуждения по нервному волокну следует учитывать чисто физические или кабельные свойства проводника (нерв можно представить как кабель, помещенный в морскую воду). К кабельным свойствам относится, в частности, диаметр (поперечное сечение) проводника - чем толще нервное волокно (или больше поперечное сечение), тем меньше сопротивление. Следовательно, тем быстрее будет распространение возбуждения в виде импульса. Большое значение при возбуждении имеет также емкость и сопротивление мембраны. Так, если входное сопротивление мембраны больше, то и возбудимость в этом месте уменьшается. К кабельным свойствам относится также и электротон, оказывающий большое влияние на проводимость: чем выраженнее катэлектротон, тем быстрее проводится потенциал действия. Анэлектротонические изменения, напротив, ухудшают проведение возбуждения по нервной ткани.

В зависимости от скорости проведения возбуждения все нервные волокна делятся на три группы: А, В и С. Нервные волокна группы А - это высокоскоростные волокна, исключительно мякотного типа. В зависти от сечения нервного волокна скорость проведения возбуждения их колеблется в пределах 20-120 м/с. Различают А- волокна - самые скоростные - 70-120 м/с (диаметр волокна 12-20 мкм - a-волокна, их средняя скорость проведения возбуждения составляет 70-120 м/с; диаметр 8-12 мкм - b-волокна, проводящие возбуждение со скоростью 40-70 м/с; диаметр волокна 4-8 мкм - g-волокна, проводящие возбуждение со скоростью 20-40 м/с). Таким образом, чем толще проводник, тем больше скорость проведения возбуждения. Нервные волокна группы В представляют собой в основном безмякотные волокна, скорость распространения возбуждения которых составляет 6-20 м/с. Нервные волокна группы С представлены исключительно безмякотными волокнами вегетативной природы, скорость проведения возбуждения их составляет 0,5-6 м/с.

В физиологии имеется три закона распространения возбуждения.

Закон целостности нерва (закон непрерывности). Нерв проводит возбуждение только в том случае, если он сохраняет свою гистологическую и функциональную целостность. Любые отклонения этих показателей приводят к нарушению его проводимости. Действие местных анестетиков (новокаин) основано на том, что молекулы новокаина блокируют натриевые каналы, в результате чего прекращается натриевый ток и ткань теряет способность возбуждаться. Возбуждение при раздражении болевых рецепторов доходит до места, где действует новокаин и блокируется, вследствие чего болевые импульсы не достигают болевого центра.

Закон двустороннего проведения возбуждения. Нервное волокно способно проводить возбуждение от рецепторов к центрам и наоборот, от центров к периферическим образованиям. Такая закономерность была показана в классических исследования Кюне и Бабухина. Так, опыт Кюне заключался в следующем: если нарушить целостность мышцы между двумя ее участками, которые иннервируются двумя разветвлениями одного аксона, то электрическое раздражение любого из ответвлений аксона приводит к сокращению обеих частей мышцы.

Закон изолированного распространения возбуждения. Известно, что потенциал действия в волокнах, покрытых миелином, не перебрасывается с одного нервного волокна на другое благодаря хорошим изоляционным свойствам миелина. Такое изолированное проведение возбуждения обеспечивает мелкие и точные профессиональные сокращения мышц (игра на пианино, работа часового мастера и др.). Сразу после рождения достаточная миелинизация нервных волокон отсутствует и на любое раздражение новорожденные в большинстве случаев отвечают не локальными, а диффузными сокращениями большой группы мышц. Подобная же ответная реакция наблюдается во всех гладких мышцах, которые иннервируются безмякотными нервными волокнами, не обладающими изоляционнымитсвойствами.

Ретикулярная формация (от лат. reticulum - сеточка, formatio - образование)

сетевидное образование, совокупность нервных структур, расположенных в центральных отделах стволовой части мозга (продолговатом и среднем мозге, зрительных буграх). Нейрон ы, составляющие Р. ф., разнообразны по величине, строению и длине Аксон ов; их волокна густо переплетаются. Термин «Р. ф.», введённый немецким учёным О. Дейтерсом, отражает лишь морфологические её особенности. Р. ф. морфологически и функционально связана со спинным мозгом, мозжечком (См. Мозжечок), лимбической системой (См. Лимбическая система) и корой больших полушарий головного мозга. В области Р. ф. осуществляется взаимодействие поступающих в неё как восходящих - афферентных, так и нисходящих - эфферентных импульсов. Возможна также циркуляция импульсов по замкнутым нейронным цепям. Т. о., существует постоянный уровень возбуждения нейронов Р. ф., вследствие чего обеспечиваются тонус и определённая степень готовности к деятельности различных отделов центральной нервной системы. Степень возбуждения Р. ф. регулируется корой больших полушарий головного мозга (См. Кора больших полушарий головного мозга).

Нисходящие влияния. В Р. ф. различают области, которые оказывают тормозящие и облегчающие влияния на двигательные реакции спинного мозга (См. Спинной мозг) (рис. 1 ). Зависимость между раздражением различных областей ствола мозга и спинномозговыми рефлексами впервые отметил в 1862 И. М. Сеченов . В 1944-46 американский нейрофизиолог Х. Мэгоун с сотрудниками показали, что раздражение различных участков Р. ф. продолговатого мозга оказывает облегчающее или тормозящее влияние на двигательные реакции спинного мозга. Электрическое раздражение медиальной части Р. ф. продолговатого мозга у наркотизированных и децеребрированных кошек и обезьян сопровождается полным прекращением движений, вызываемых как рефлекторно, так и стимуляцией двигательных участков коры мозга. Все тормозные эффекты - двусторонние, но на стороне раздражения такой эффект нередко наблюдается при более низком пороге раздражения. Некоторые проявления тормозящих влияний Р. ф. продолговатого мозга соответствуют картине центрального торможения, описанного Сеченовым (см. Сеченовское торможение). Раздражение латеральной области Р. ф. продолговатого мозга по периферии области, оказывающей тормозящие влияния, сопровождается облегчающим действием на моторную активность спинного мозга. Область Р. ф., оказывающая облегчающие влияния на спинной мозг, не ограничивается продолговатым мозгом, а распространяется кпереди, захватывая область варолиева моста и среднего мозга. Р. ф. может воздействовать на различные образования спинного мозга, например на альфа-мотонейроны, иннервирующие основные (экстрафузальные) волокна мышц, участвующих в произвольных движениях. Увеличение латентных периодов ответов мотонейронов при раздражении тормозящих отделов Р. ф. позволяет предполагать, что тормозящие влияния ретикулярных структур на двигательные реакции спинного мозга осуществляются с помощью вставочных нейронов, возможно клеток Реншоу. Механизм влияния Р. ф. на мышечный тонус раскрыт шведским нейрофизиологом Р. Гранитом, показавшим, что Р. ф. влияет также на активность гамма-мотонейронов, аксоны которых идут к так называемым интрафузальным мышечным волокнам, осуществляя важную роль в регуляции позы и фазных движений организма.

Восходящие влияния. Различные отделы Р. ф. (от промежуточного до продолговатого мозга) оказывают возбуждающие генерализованные влияния на кору мозга, т. е. вовлекают в процесс возбуждения все области коры больших полушарий (рис. 2 ). В 1949 итальянский физиолог Дж. Моруцци и Мэгоун, исследуя биоэлектрическую активность мозга, установили, что раздражение Р. ф. ствола мозга изменяет медленные синхронные высоковольтные колебания, характерные для сна, на низкоамплитудную высокочастотную активность, характерную для бодрствования. Изменение электрической активности коры мозга сопровождается у животных внешними проявлениями пробуждения. Р. ф. тесно связана анатомически с классическими проводящими путями, и возбуждение её осуществляется с помощью экстеро- и интероцептивных афферентных (чувствительных) систем. На этом основании ряд авторов относит Р. ф. к неспецифической афферентной системе мозга. Однако применение различных фармакологических веществ при изучении функции Р. ф., открытие избирательного действия химических препаратов на реакции, осуществляемые с участием Р. ф., позволили П. К. Анохин у сформулировать положение о специфичности восходящих влияний Р. ф. на кору мозга. Активирующие влияния Р. ф. всегда имеют определённое биологическое значение и характеризуются избирательной чувствительностью к различным фармакологическим веществам (Анохин, 1959, 1968). Введённые в организм наркотические средства вызывают торможение нейронов Р. ф., блокируя тем самым её восходящие активирующие влияния на кору мозга.

Важная роль в поддержании активности Р. ф., чувствительных к различным циркулирующим в крови химическим веществам, принадлежит гуморальным факторам: катехоламинам, двуокиси углерода, холинэргическим веществам и т. д. Это обеспечивает включение Р. ф. в регулирование некоторых вегетативных функций. Кора больших полушарий, испытывающая тонические активирующие влияния со стороны Р. ф., может активно изменять функциональное состояние ретикулярных образований (изменять скорость проведения возбуждения в ней, влиять на функционирование отдельных нейронов), т. е. контролировать, по выражению И. П. Павлова, «слепую силу» подкорки.

Открытие свойств Р. ф., её взаимоотношений с другими подкорковыми структурами и областями коры мозга позволило уточнить нейрофизиологические механизмы боли, сна, бодрствования, активного внимания, формирования целостных условно-рефлекторных реакций, развития различных мотивационных и эмоциональных состояний организма. Исследования Р. ф. с использованием фармакологических средств открывают возможности медикаментозного лечения ряда заболеваний центральной нервной системы, обусловливают новый подход к таким важнейшим проблемам медицины, как наркоз и др.

Лит.: Бродал А., Ретикулярная формация мозгового ствола, пер, с англ., М., 1960; Росси Дж. Ф., Цанкетти А., Ретикулярная формация ствола мозга, пер. с англ., М., 1960; Ретикулярная формация мозга, пер. с англ., М., 1962; Мэгун Г., Бодрствующий мозг, пер. с англ., 2 изд., М., 1965; Анохин П. К., Биология и нейрофизиология условного рефлекса, М., 1968; Гранит Р., Основы регуляции движений, пер. с англ., М., 1973; Moruzzi G., Magoun Н. W., Brain stem reticular formation and activation of EEG, в книга: Electroencephalography and clinical neurophysiology, v. 1, Boston, 1949

В. Г. Зилов.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Ретикулярная формация" в других словарях:

    - (formatio reticularis; лат. reticulum сеть; синоним ретикулярная субстанция) комплекс клеточных и ядерных образований, занимающих центральное положение в стволе головного мозга и в верхнем отделе спинного мозга. Большое количество нервных волокон … Википедия

    Ретикулярная формация - Сложная сеть нейронов и клеточных ядер, занимающая центральную часть ствола головного мозга. Часто называется «ретикулярной системой активации» из за той роли, которую она играет в процессе активации. Совзременные исследования позволяют… … Большая психологическая энциклопедия

    Совокупность структур в центральных отделах головного мозга, регулирующих уровень возбудимости и тонуса ниже и вышележащих отделов центральной нервной системы, включая кору больших полушарий … Большой Энциклопедический словарь

    РЕТИКУЛЯРНАЯ ФОРМАЦИЯ, сложный механизм ЦЕНТРАЛЬНОЙ НЕРВНОЙ СИСТЕМЫ позвоночных, находящийся в стволе спинного МОЗГА. Состоит из взаимосвязанных скоплений тел нервных клеток (серое вещество) и считается, что влияет на многие физиологические… … Научно-технический энциклопедический словарь

    - (formatio reticularis), совокупность нервных структур, расположенных в спинном, продолговатом, среднем мозге и варолиевом мосту и образующих единый функц. комплекс. Филогенетически древняя система двигат. контроля. Хорошо развита у всех… … Биологический энциклопедический словарь

    Ретикулярная формация - (лат. rete сеть, formatio формирование, образование, составление) сетевидная нервная структура, состоящая из более чем 50 ядер и обширной сети нейронов со сложными и разветвлёнными аксональными и дендритными отростками. Название предложено… … Энциклопедический словарь по психологии и педагогике

    Совокупность структур, расположенных в спинном, продолговатом и среднем мозге и варолиевом мосту и образующих единый функциональный комплекс. Оказывает активирующее и тормозящее влияние на различные отделы центральной нервной системы, повышая… … Энциклопедический словарь

    ретикулярная формация - (formatio reticularis) совокупность небольших, но многочисленных ядер, расположенных в центральных отделах ствола мозга. Нейроны ретикулярной формации имеют сильно ветвящиеся отростки, идущие в различных направлениях, напоминая под микроскопом … Словарь терминов и понятий по анатомии человека

    Ретикулярная формация - (от лат. reticulum сетка) нервная структура, расположенная вдоль всего мозгового ствола и состоящая из клеток, отростки которых ветвятся в обширных областях мозговой коры. Функция ретикулярной формации заключается в активизации коры головного… … Психология человека: словарь терминов

    I Ретикулярная формация (formatio reticularis; лат. reticulum сетка; синоним ретикулярная субстанция) комплекс клеточных и ядерных образований, занимающих центральное положение в стволе головного мозга и в верхнем отделе спинного мозга. Большое… … Медицинская энциклопедия



Похожие публикации